Skip to main content
Journal of Medical Genetics logoLink to Journal of Medical Genetics
. 2000 Sep;37(9):669–673. doi: 10.1136/jmg.37.9.669

A novel mutation in the thiamine responsive megaloblastic anaemia gene SLC19A2 in a patient with deficiency of respiratory chain complex I

C Scharfe, M Hauschild, T Klopstock, A Janssen, P Heidemann, T Meitinger, M Jaksch
PMCID: PMC1734685  PMID: 10978358

Abstract

The thiamine transporter gene SLC19A2 was recently found to be mutated in thiamine responsive megaloblastic anaemia with diabetes and deafness (TRMA, Rogers syndrome), an early onset autosomal recessive disorder. We now report a novel G1074A transition mutation in exon 4 of the SLC19A2 gene, predicting a Trp358 to ter change, in a girl with consanguineous parents. In addition to the typical triad of Rogers syndrome, the girl presented with short stature, hepatosplenomegaly, retinal degeneration, and a brain MRI lesion. Both muscle and skin biopsies were obtained before high dose thiamine supplementation. While no mitochondrial abnormalities were seen on morphological examination of muscle, biochemical analysis showed a severe deficiency of pyruvate dehydrogenase and complex I of the respiratory chain. In the patient's fibroblasts, the supplementation with high doses of thiamine resulted in restoration of complex I activity. In conclusion, we provide evidence that thiamine deficiency affects complex I activity. The clinical features of TRMA, resembling in part those found in typical mitochondrial disorders with complex I deficiency, may be caused by a secondary defect in mitochondrial energy production.


Keywords: TRMA syndrome; SLC19A2 gene; complex I deficiency

Full Text

The Full Text of this article is available as a PDF (154.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abboud M. R., Alexander D., Najjar S. S. Diabetes mellitus, thiamine-dependent megaloblastic anemia, and sensorineural deafness associated with deficient alpha-ketoglutarate dehydrogenase activity. J Pediatr. 1985 Oct;107(4):537–541. doi: 10.1016/s0022-3476(85)80011-1. [DOI] [PubMed] [Google Scholar]
  2. Banikazemi M., Diaz G. A., Vossough P., Jalali M., Desnick R. J., Gelb B. D. Localization of the thiamine-responsive megaloblastic anemia syndrome locus to a 1.4-cM region of 1q23. Mol Genet Metab. 1999 Mar;66(3):193–198. doi: 10.1006/mgme.1998.2799. [DOI] [PubMed] [Google Scholar]
  3. Barrett T. G., Poulton K., Baines M., McCowen C. Muscle biochemistry in thiamin-responsive anaemia. J Inherit Metab Dis. 1997 Jul;20(3):404–406. doi: 10.1023/a:1005302717117. [DOI] [PubMed] [Google Scholar]
  4. Bazarbachi A., Muakkit S., Ayas M., Taher A., Salem Z., Solh H., Haidar J. H. Thiamine-responsive myelodysplasia. Br J Haematol. 1998 Sep;102(4):1098–1100. doi: 10.1046/j.1365-2141.1998.00861.x. [DOI] [PubMed] [Google Scholar]
  5. Brown G. K., Otero L. J., LeGris M., Brown R. M. Pyruvate dehydrogenase deficiency. J Med Genet. 1994 Nov;31(11):875–879. doi: 10.1136/jmg.31.11.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coy J. F., Dübel S., Kioschis P., Thomas K., Micklem G., Delius H., Poustka A. Molecular cloning of tissue-specific transcripts of a transketolase-related gene: implications for the evolution of new vertebrate genes. Genomics. 1996 Mar 15;32(3):309–316. doi: 10.1006/geno.1996.0124. [DOI] [PubMed] [Google Scholar]
  7. Diaz G. A., Banikazemi M., Oishi K., Desnick R. J., Gelb B. D. Mutations in a new gene encoding a thiamine transporter cause thiamine-responsive megaloblastic anaemia syndrome. Nat Genet. 1999 Jul;22(3):309–312. doi: 10.1038/10385. [DOI] [PubMed] [Google Scholar]
  8. Dutta B., Huang W., Molero M., Kekuda R., Leibach F. H., Devoe L. D., Ganapathy V., Prasad P. D. Cloning of the human thiamine transporter, a member of the folate transporter family. J Biol Chem. 1999 Nov 5;274(45):31925–31929. doi: 10.1074/jbc.274.45.31925. [DOI] [PubMed] [Google Scholar]
  9. Fleming J. C., Tartaglini E., Steinkamp M. P., Schorderet D. F., Cohen N., Neufeld E. J. The gene mutated in thiamine-responsive anaemia with diabetes and deafness (TRMA) encodes a functional thiamine transporter. Nat Genet. 1999 Jul;22(3):305–308. doi: 10.1038/10379. [DOI] [PubMed] [Google Scholar]
  10. Hasuo K., Tamura S., Yasumori K., Uchino A., Goda S., Ishimoto S., Kamikaseda K., Wakuta Y., Kishi M., Masuda K. Computed tomography and angiography in MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes); report of 3 cases. Neuroradiology. 1987;29(4):393–397. doi: 10.1007/BF00348922. [DOI] [PubMed] [Google Scholar]
  11. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–1069. doi: 10.1146/annurev.bi.54.070185.005055. [DOI] [PubMed] [Google Scholar]
  12. Hohmann S., Meacock P. A. Thiamin metabolism and thiamin diphosphate-dependent enzymes in the yeast Saccharomyces cerevisiae: genetic regulation. Biochim Biophys Acta. 1998 Jun 29;1385(2):201–219. doi: 10.1016/s0167-4838(98)00069-7. [DOI] [PubMed] [Google Scholar]
  13. Jaksch M., Gerbitz K. D., Kilger C. Screening for mitochondrial DNA (mtDNA) point mutations using nonradioactive single strand conformation polymorphism (SSCP) analysis. Clin Biochem. 1995 Oct;28(5):503–509. doi: 10.1016/0009-9120(95)00035-8. [DOI] [PubMed] [Google Scholar]
  14. Koike K. The gene encoding human 2-oxoglutarate dehydrogenase: structural organization and mapping to chromosome 7p13-p14. Gene. 1995 Jul 4;159(2):261–266. doi: 10.1016/0378-1119(95)00086-l. [DOI] [PubMed] [Google Scholar]
  15. Labay V., Raz T., Baron D., Mandel H., Williams H., Barrett T., Szargel R., McDonald L., Shalata A., Nosaka K. Mutations in SLC19A2 cause thiamine-responsive megaloblastic anaemia associated with diabetes mellitus and deafness. Nat Genet. 1999 Jul;22(3):300–304. doi: 10.1038/10372. [DOI] [PubMed] [Google Scholar]
  16. Laforenza U., Patrini C., Alvisi C., Faelli A., Licandro A., Rindi G. Thiamine uptake in human intestinal biopsy specimens, including observations from a patient with acute thiamine deficiency. Am J Clin Nutr. 1997 Aug;66(2):320–326. doi: 10.1093/ajcn/66.2.320. [DOI] [PubMed] [Google Scholar]
  17. Mandel H., Berant M., Hazani A., Naveh Y. Thiamine-dependent beriberi in the "thiamine-responsive anemia syndrome". N Engl J Med. 1984 Sep 27;311(13):836–838. doi: 10.1056/NEJM198409273111307. [DOI] [PubMed] [Google Scholar]
  18. Neufeld E. J., Mandel H., Raz T., Szargel R., Yandava C. N., Stagg A., Fauré S., Barrett T., Buist N., Cohen N. Localization of the gene for thiamine-responsive megaloblastic anemia syndrome, on the long arm of chromosome 1, by homozygosity mapping. Am J Hum Genet. 1997 Dec;61(6):1335–1341. doi: 10.1086/301642. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Poggi V., Longo G., DeVizia B., Andria G., Rindi G., Patrini C., Cassandro E. Thiamin-responsive megaloblastic anaemia: a disorder of thiamin transport? J Inherit Metab Dis. 1984;7 (Suppl 2):153–154. doi: 10.1007/978-94-009-5612-4_51. [DOI] [PubMed] [Google Scholar]
  20. Porter F. S., Rogers L. E., Sidbury J. B., Jr Thiamine-responsive megaloblastic anemia. J Pediatr. 1969 Apr;74(4):494–504. doi: 10.1016/s0022-3476(69)80031-4. [DOI] [PubMed] [Google Scholar]
  21. Raz T., Barrett T., Szargel R., Mandel H., Neufeld E. J., Nosaka K., Viana M. B., Cohen N. Refined mapping of the gene for thiamine-responsive megaloblastic anemia syndrome and evidence for genetic homogeneity. Hum Genet. 1998 Oct;103(4):455–461. doi: 10.1007/s004390050850. [DOI] [PubMed] [Google Scholar]
  22. Schulte U., Haupt V., Abelmann A., Fecke W., Brors B., Rasmussen T., Friedrich T., Weiss H. A reductase/isomerase subunit of mitochondrial NADH:ubiquinone oxidoreductase (complex I) carries an NADPH and is involved in the biogenesis of the complex. J Mol Biol. 1999 Sep 24;292(3):569–580. doi: 10.1006/jmbi.1999.3096. [DOI] [PubMed] [Google Scholar]
  23. Sperl W., Ruitenbeek W., Sengers R. C., Trijbels J. M., Bentlage H., Wraith J. E., Heilmann C., Stöckler S., Binder C., Korenke G. C. Combined deficiencies of the pyruvate dehydrogenase complex and enzymes of the respiratory chain in mitochondrial myopathies. Eur J Pediatr. 1992 Mar;151(3):192–195. doi: 10.1007/BF01954382. [DOI] [PubMed] [Google Scholar]
  24. Stagg A. R., Fleming J. C., Baker M. A., Sakamoto M., Cohen N., Neufeld E. J. Defective high-affinity thiamine transporter leads to cell death in thiamine-responsive megaloblastic anemia syndrome fibroblasts. J Clin Invest. 1999 Mar;103(5):723–729. doi: 10.1172/JCI3895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Viana M. B., Carvalho R. I. Thiamine-responsive megaloblastic anemia, sensorineural deafness, and diabetes mellitus: A new syndrome? J Pediatr. 1978 Aug;93(2):235–238. doi: 10.1016/s0022-3476(78)80503-4. [DOI] [PubMed] [Google Scholar]
  26. Wenzel T. J., van den Berg M. A., Visser W., van den Berg J. A., Steensma H. Y. Characterization of Saccharomyces cerevisiae mutants lacking the E1 alpha subunit of the pyruvate dehydrogenase complex. Eur J Biochem. 1992 Oct 15;209(2):697–705. doi: 10.1111/j.1432-1033.1992.tb17338.x. [DOI] [PubMed] [Google Scholar]
  27. Zhang B., Wappner R. S., Brandt I. K., Harris R. A., Crabb D. W. Sequence of the E1 alpha subunit of branched-chain alpha-ketoacid dehydrogenase in two patients with thiamine-responsive maple syrup urine disease. Am J Hum Genet. 1990 Apr;46(4):843–846. [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Medical Genetics are provided here courtesy of BMJ Publishing Group

RESOURCES