Abstract
Background: Approximately 80% of the α- and 10% of the ß-thalassaemias are caused by genomic deletions involving the α- and ß-globin gene clusters on chromosomes 16p13.3 and 11p15.5, respectively. Gap-PCR, Southern blot analysis, and fluorescent in situ hybridisation are commonly used to identify these deletions; however, many deletions go undetected using conventional techniques.
Methods: Patient samples for which no abnormalities had been found using conventional DNA techniques were analysed by a three colour multiplex ligation-dependent probe amplification assay. Two sets of 35 and 50 probes, covering a region of 700 kb of the α- and 500 kb of the ß-globin gene cluster, respectively, were designed to detect rearrangements in the α- and ß-globin gene clusters.
Results: In 19 out of 38 patient samples, we found 11 different α-thalassaemia deletions, six of which were not previously described. Two novel deletions leaving the α-globin gene cluster intact were found to cause a complete downregulation of the downstream α-genes. Similarly, 31 out of 51 patient samples were found to carry 10 different deletions involving the ß-globin gene cluster, three of which were not previously described. One involves the deletion of the locus control region leaving the ß-globin gene cluster intact.
Conclusions: These deletions, which are not easily detected by conventional techniques, may have clinical implications during pregnancy ranging from mild to life threatening microcytic haemolytic anaemia in neonates. The approach as described here is a rapid and sensitive method for high resolution analysis of the globin gene clusters and for any region of the genome.
Full Text
The Full Text of this article is available as a PDF (475.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abels J., Michiels J. J., Giordano P. C., Bernini L. F., Baysal E., Smetanina N. S., Kazanetz E. G., Leonova J. Y., Huisman T. H. A de novo deletion causing epsilon gamma delta beta-thalassemia in a Dutch patient. Acta Haematol. 1996;96(2):108–109. doi: 10.1159/000203726. [DOI] [PubMed] [Google Scholar]
- Anguita Eduardo, Sharpe Jacqueline A., Sloane-Stanley Jacqueline A., Tufarelli Cristina, Higgs Douglas R., Wood William G. Deletion of the mouse alpha-globin regulatory element (HS -26) has an unexpectedly mild phenotype. Blood. 2002 Jul 5;100(10):3450–3456. doi: 10.1182/blood-2002-05-1409. [DOI] [PubMed] [Google Scholar]
- Bernini L. F., Harteveld C. L. Alpha-thalassaemia. Baillieres Clin Haematol. 1998 Mar;11(1):53–90. doi: 10.1016/s0950-3536(98)80070-x. [DOI] [PubMed] [Google Scholar]
- Chong S. S., Boehm C. D., Higgs D. R., Cutting G. R. Single-tube multiplex-PCR screen for common deletional determinants of alpha-thalassemia. Blood. 2000 Jan 1;95(1):360–362. [PubMed] [Google Scholar]
- Craig J. E., Barnetson R. A., Prior J., Raven J. L., Thein S. L. Rapid detection of deletions causing delta beta thalassemia and hereditary persistence of fetal hemoglobin by enzymatic amplification. Blood. 1994 Mar 15;83(6):1673–1682. [PubMed] [Google Scholar]
- Craig J. E., Barnetson R., Weatherall D. J., Thein S. L. Rapid detection of a 13.4-kb deletion causing delta beta thalassemia in an Egyptian family by polymerase chain reaction. Blood. 1993 Feb 1;81(3):861–863. [PubMed] [Google Scholar]
- Daniels R. J., Peden J. F., Lloyd C., Horsley S. W., Clark K., Tufarelli C., Kearney L., Buckle V. J., Doggett N. A., Flint J. Sequence, structure and pathology of the fully annotated terminal 2 Mb of the short arm of human chromosome 16. Hum Mol Genet. 2001 Feb 15;10(4):339–352. doi: 10.1093/hmg/10.4.339. [DOI] [PubMed] [Google Scholar]
- Dimovski A. J., Divoky V., Adekile A. D., Baysal E., Wilson J. B., Prior J. F., Raven J. L., Huisman T. H. A novel deletion of approximately 27 kb including the beta-globin gene and the locus control region 3'HS-1 regulatory sequence: beta zero-thalassemia or hereditary persistence of fetal hemoglobin? Blood. 1994 Feb 1;83(3):822–827. [PubMed] [Google Scholar]
- Gilman J. G. The 12.6 kilobase DNA deletion in Dutch beta zero-thalassaemia. Br J Haematol. 1987 Nov;67(3):369–372. doi: 10.1111/j.1365-2141.1987.tb02360.x. [DOI] [PubMed] [Google Scholar]
- Giordano P. C., Harteveld C. L., Heister A. J., Batelaan D., van Delft P., Plug R., Losekoot M., Bernini L. F. The molecular spectrum of beta-thalassemia and abnormal hemoglobins in the allochthonous and autochthonous dutch population. Community Genet. 1998;1(4):243–251. doi: 10.1159/000016170. [DOI] [PubMed] [Google Scholar]
- Harteveld Cornelis L., Muglia Maria, Passarino Giuseppe, Kielman Menno F., Bernini Luigi F. Genetic polymorphism of the major regulatory element HS-40 upstream of the human alpha-globin gene cluster. Br J Haematol. 2002 Dec;119(3):848–854. doi: 10.1046/j.1365-2141.2002.03917.x. [DOI] [PubMed] [Google Scholar]
- Harteveld Cornelis L., Osborne Cameron S., Peters Marjolein, van der Werf Steffie, Plug Rob, Fraser Peter, Giordano Piero C. Novel 112 kb (epsilonGgammaAgamma) deltabeta-thalassaemia deletion in a Dutch family. Br J Haematol. 2003 Sep;122(5):855–858. doi: 10.1046/j.1365-2141.2003.04505.x. [DOI] [PubMed] [Google Scholar]
- Harteveld Cornelis L., van Delft Peter, Wijermans Pierre W., Kappers-Klunne Mies C., Weegenaar Jitske, Losekoot Monique, Giordano Piero C. A novel 7.9 kb deletion causing alpha+-thalassaemia in two independent families of Indian origin. Br J Haematol. 2003 Jan;120(2):364–366. doi: 10.1046/j.1365-2141.2003.04060.x. [DOI] [PubMed] [Google Scholar]
- Harteveld K. L., Losekoot M., Fodde R., Giordano P. C., Bernini L. F. The involvement of Alu repeats in recombination events at the alpha-globin gene cluster: characterization of two alphazero-thalassaemia deletion breakpoints. Hum Genet. 1997 Apr;99(4):528–534. doi: 10.1007/s004390050401. [DOI] [PubMed] [Google Scholar]
- Harteveld K. L., Losekoot M., Heister A. J., van der Wielen M., Giordano P. C., Bernini L. F. alpha-Thalassemia in The Netherlands: a heterogeneous spectrum of both deletions and point mutations. Hum Genet. 1997 Sep;100(3-4):465–471. doi: 10.1007/s004390050535. [DOI] [PubMed] [Google Scholar]
- Henthorn P. S., Smithies O., Mager D. L. Molecular analysis of deletions in the human beta-globin gene cluster: deletion junctions and locations of breakpoints. Genomics. 1990 Feb;6(2):226–237. doi: 10.1016/0888-7543(90)90561-8. [DOI] [PubMed] [Google Scholar]
- Higgs D. R., Sharpe J. A., Wood W. G. Understanding alpha globin gene expression: a step towards effective gene therapy. Semin Hematol. 1998 Apr;35(2):93–104. [PubMed] [Google Scholar]
- Horsley S. W., Daniels R. J., Anguita E., Raynham H. A., Peden J. F., Villegas A., Vickers M. A., Green S., Waye J. S., Chui D. H. Monosomy for the most telomeric, gene-rich region of the short arm of human chromosome 16 causes minimal phenotypic effects. Eur J Hum Genet. 2001 Mar;9(3):217–225. doi: 10.1038/sj.ejhg.5200610. [DOI] [PubMed] [Google Scholar]
- Janssen B., Hartmann C., Scholz V., Jauch A., Zschocke J. MLPA analysis for the detection of deletions, duplications and complex rearrangements in the dystrophin gene: potential and pitfalls. Neurogenetics. 2005 Jan 18;6(1):29–35. doi: 10.1007/s10048-004-0204-1. [DOI] [PubMed] [Google Scholar]
- Kent W. James. BLAT--the BLAST-like alignment tool. Genome Res. 2002 Apr;12(4):656–664. doi: 10.1101/gr.229202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knight S. J., Horsley S. W., Regan R., Lawrie N. M., Maher E. J., Cardy D. L., Flint J., Kearney L. Development and clinical application of an innovative fluorescence in situ hybridization technique which detects submicroscopic rearrangements involving telomeres. Eur J Hum Genet. 1997 Jan-Feb;5(1):1–8. [PubMed] [Google Scholar]
- Lin C. K., Gau J. P., Hsu H. C., Jiang M. L. Efficacy of a modified improved technique for detecting red cell haemoglobin H inclusions. Clin Lab Haematol. 1990;12(4):409–415. doi: 10.1111/j.1365-2257.1990.tb00353.x. [DOI] [PubMed] [Google Scholar]
- Liu Y. T., Old J. M., Miles K., Fisher C. A., Weatherall D. J., Clegg J. B. Rapid detection of alpha-thalassaemia deletions and alpha-globin gene triplication by multiplex polymerase chain reactions. Br J Haematol. 2000 Feb;108(2):295–299. doi: 10.1046/j.1365-2141.2000.01870.x. [DOI] [PubMed] [Google Scholar]
- Locke D. P., Segraves R., Nicholls R. D., Schwartz S., Pinkel D., Albertson D. G., Eichler E. E. BAC microarray analysis of 15q11-q13 rearrangements and the impact of segmental duplications. J Med Genet. 2004 Mar;41(3):175–182. doi: 10.1136/jmg.2003.013813. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Losekoot M., Fodde R., Gerritsen E. J., van de Kuit I., Schreuder A., Giordano P. C., Vossen J. M., Bernini L. F. Interaction of two different disorders in the beta-globin gene cluster associated with an increased hemoglobin F production: a novel deletion type of (G) gamma + ((A) gamma delta beta)(0)-thalassemia and a delta(0)-hereditary persistence of fetal hemoglobin determinant. Blood. 1991 Feb 15;77(4):861–867. [PubMed] [Google Scholar]
- Mishima N., Landman H., Huisman T. H., Gilman J. G. The DNA deletion in an Indian delta beta-thalassaemia begins one kilobase from the A gamma globin gene and ends in an L1 repetitive sequence. Br J Haematol. 1989 Nov;73(3):375–379. doi: 10.1111/j.1365-2141.1989.tb07756.x. [DOI] [PubMed] [Google Scholar]
- Orkin S. H., Old J. M., Weatherall D. J., Nathan D. G. Partial deletion of beta-globin gene DNA in certain patients with beta 0-thalassemia. Proc Natl Acad Sci U S A. 1979 May;76(5):2400–2404. doi: 10.1073/pnas.76.5.2400. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rooms Liesbeth, Reyniers Edwin, van Luijk Rob, Scheers Stefaan, Wauters Jan, Ceulemans Berten, Van Den Ende Jenneke, Van Bever Yolande, Kooy R. Frank. Subtelomeric deletions detected in patients with idiopathic mental retardation using multiplex ligation-dependent probe amplification (MLPA). Hum Mutat. 2004 Jan;23(1):17–21. doi: 10.1002/humu.10300. [DOI] [PubMed] [Google Scholar]
- Sellner Loryn N., Taylor Graham R. MLPA and MAPH: new techniques for detection of gene deletions. Hum Mutat. 2004 May;23(5):413–419. doi: 10.1002/humu.20035. [DOI] [PubMed] [Google Scholar]
- Taylor C. F., Charlton R. S., Burn J., Sheridan E., Taylor G. R. Genomic deletions in MSH2 or MLH1 are a frequent cause of hereditary non-polyposis colorectal cancer: identification of novel and recurrent deletions by MLPA. Hum Mutat. 2003 Dec;22(6):428–433. doi: 10.1002/humu.10291. [DOI] [PubMed] [Google Scholar]
- Thein S. L. Beta-thalassaemia. Baillieres Clin Haematol. 1998 Mar;11(1):91–126. doi: 10.1016/s0950-3536(98)80071-1. [DOI] [PubMed] [Google Scholar]
- White Stefan J., Vink Geraldine R., Kriek Marjolein, Wuyts Wim, Schouten Jan, Bakker Bert, Breuning Martijn H., den Dunnen Johan T. Two-color multiplex ligation-dependent probe amplification: detecting genomic rearrangements in hereditary multiple exostoses. Hum Mutat. 2004 Jul;24(1):86–92. doi: 10.1002/humu.20054. [DOI] [PubMed] [Google Scholar]
- White Stefan, Kalf Margot, Liu Qiang, Villerius Michel, Engelsma Dieuwke, Kriek Marjolein, Vollebregt Ellen, Bakker Bert, van Ommen Gert-Jan B., Breuning Martijn H. Comprehensive detection of genomic duplications and deletions in the DMD gene, by use of multiplex amplifiable probe hybridization. Am J Hum Genet. 2002 Jul 8;71(2):365–374. doi: 10.1086/341942. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilkie A. O., Buckle V. J., Harris P. C., Lamb J., Barton N. J., Reeders S. T., Lindenbaum R. H., Nicholls R. D., Barrow M., Bethlenfalvay N. C. Clinical features and molecular analysis of the alpha thalassemia/mental retardation syndromes. I. Cases due to deletions involving chromosome band 16p13.3. Am J Hum Genet. 1990 Jun;46(6):1112–1126. [PMC free article] [PubMed] [Google Scholar]