Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2002 Feb;72(2):162–178. doi: 10.1136/jnnp.72.2.162

Psychoanatomical substrates of Bálint's syndrome

M Rizzo 1, S Vecera 1
PMCID: PMC1737727  PMID: 11796765

Abstract

Objectives: From a series of glimpses, we perceive a seamless and richly detailed visual world. Cerebral damage, however, can destroy this illusion. In the case of Bálint's syndrome, the visual world is perceived erratically, as a series of single objects. The goal of this review is to explore a range of psychological and anatomical explanations for this striking visual disorder and to propose new directions for interpreting the findings in Bálint's syndrome and related cerebral disorders of visual processing.

Methods: Bálint's syndrome is reviewed in the light of current concepts and methodologies of vision research.

Results: The syndrome affects visual perception (causing simultanagnosia/visual disorientation) and visual control of eye and hand movement (causing ocular apraxia and optic ataxia). Although it has been generally construed as a biparietal syndrome causing an inability to see more than one object at a time, other lesions and mechanisms are also possible. Key syndrome components are dissociable and comprise a range of disturbances that overlap the hemineglect syndrome. Inouye's observations in similar cases, beginning in 1900, antedated Bálint's initial report. Because Bálint's syndrome is not common and is difficult to assess with standard clinical tools, the literature is dominated by case reports and confounded by case selection bias, non-uniform application of operational definitions, inadequate study of basic vision, poor lesion localisation, and failure to distinguish between deficits in the acute and chronic phases of recovery.

Conclusions: Studies of Bálint's syndrome have provided unique evidence on neural substrates for attention, perception, and visuomotor control. Future studies should address possible underlying psychoanatomical mechanisms at "bottom up" and "top down" levels, and should specifically consider visual working memory and attention (including object based attention) as well as systems for identification of object structure and depth from binocular stereopsis, kinetic depth, motion parallax, eye movement signals, and other cues.

Full Text

The Full Text of this article is available as a PDF (378.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aldrich M. S., Vanderzant C. W., Alessi A. G., Abou-Khalil B., Sackellares J. C. Ictal cortical blindness with permanent visual loss. Epilepsia. 1989 Jan-Feb;30(1):116–120. doi: 10.1111/j.1528-1157.1989.tb05292.x. [DOI] [PubMed] [Google Scholar]
  2. Alivisatos B., Petrides M. Functional activation of the human brain during mental rotation. Neuropsychologia. 1997 Feb;35(2):111–118. doi: 10.1016/s0028-3932(96)00083-8. [DOI] [PubMed] [Google Scholar]
  3. Ball K. K., Beard B. L., Roenker D. L., Miller R. L., Griggs D. S. Age and visual search: expanding the useful field of view. J Opt Soc Am A. 1988 Dec;5(12):2210–2219. doi: 10.1364/josaa.5.002210. [DOI] [PubMed] [Google Scholar]
  4. Ball K., Owsley C., Sloane M. E., Roenker D. L., Bruni J. R. Visual attention problems as a predictor of vehicle crashes in older drivers. Invest Ophthalmol Vis Sci. 1993 Oct;34(11):3110–3123. [PubMed] [Google Scholar]
  5. Barbur J. L., Forsyth P. M., Findlay J. M. Human saccadic eye movements in the absence of the geniculocalcarine projection. Brain. 1988 Feb;111(Pt 1):63–82. doi: 10.1093/brain/111.1.63. [DOI] [PubMed] [Google Scholar]
  6. Barbur J. L., Ruddock K. H., Waterfield V. A. Human visual responses in the absence of the geniculo-calcarine projection. Brain. 1980 Dec;103(4):905–928. doi: 10.1093/brain/103.4.905. [DOI] [PubMed] [Google Scholar]
  7. Barbur J. L., Watson J. D., Frackowiak R. S., Zeki S. Conscious visual perception without V1. Brain. 1993 Dec;116(Pt 6):1293–1302. doi: 10.1093/brain/116.6.1293. [DOI] [PubMed] [Google Scholar]
  8. Baylis G. C., Driver J., Baylis L. L., Rafal R. D. Reading of letters and words in a patient with Balint's syndrome. Neuropsychologia. 1994 Oct;32(10):1273–1286. doi: 10.1016/0028-3932(94)90109-0. [DOI] [PubMed] [Google Scholar]
  9. Benton A. L. Gerstmann's syndrome. Arch Neurol. 1992 May;49(5):445–447. doi: 10.1001/archneur.1992.00530290027007. [DOI] [PubMed] [Google Scholar]
  10. Birren J. E. Translations in gerontology--from lab to life. Psychophysiology and speed of response. Am Psychol. 1974 Nov;29(11):808–815. doi: 10.1037/h0037433. [DOI] [PubMed] [Google Scholar]
  11. Blythe I. M., Kennard C., Ruddock K. H. Residual vision in patients with retrogeniculate lesions of the visual pathways. Brain. 1987 Aug;110(Pt 4):887–905. doi: 10.1093/brain/110.4.887. [DOI] [PubMed] [Google Scholar]
  12. Boussaoud D., di Pellegrino G., Wise S. P. Frontal lobe mechanisms subserving vision-for-action versus vision-for-perception. Behav Brain Res. 1995 Dec 14;72(1-2):1–15. doi: 10.1016/0166-4328(96)00055-1. [DOI] [PubMed] [Google Scholar]
  13. Bradshaw M. F., Rogers B. J. The interaction of binocular disparity and motion parallax in the computation of depth. Vision Res. 1996 Nov;36(21):3457–3468. doi: 10.1016/0042-6989(96)00072-7. [DOI] [PubMed] [Google Scholar]
  14. Braunstein M. L., Andersen G. J. Shape and depth perception from parallel projections of three-dimensional motion. J Exp Psychol Hum Percept Perform. 1984 Dec;10(6):749–760. doi: 10.1037//0096-1523.10.6.749. [DOI] [PubMed] [Google Scholar]
  15. Braunstein M. L., Hoffman D. D., Shapiro L. R., Andersen G. J., Bennett B. M. Minimum points and views for the recovery of three-dimensional structure. J Exp Psychol Hum Percept Perform. 1987 Aug;13(3):335–343. doi: 10.1037//0096-1523.13.3.335. [DOI] [PubMed] [Google Scholar]
  16. Brion S., Jedynak C. P. Troubles du transfert interhémisphérique (callosal disconnection). A propos de trois observations de tumeurs du corps calleux. Le signe de la main étrangére. Rev Neurol (Paris) 1972 Apr;126(4):257–266. [PubMed] [Google Scholar]
  17. Brown M. W., Xiang J. Z. Recognition memory: neuronal substrates of the judgement of prior occurrence. Prog Neurobiol. 1998 Jun;55(2):149–189. doi: 10.1016/s0301-0082(98)00002-1. [DOI] [PubMed] [Google Scholar]
  18. Bülthoff H. H., Mallot H. A. Integration of depth modules: stereo and shading. J Opt Soc Am A. 1988 Oct;5(10):1749–1758. doi: 10.1364/josaa.5.001749. [DOI] [PubMed] [Google Scholar]
  19. Carey D. P., Coleman R. J., Della Sala S. Magnetic misreaching. Cortex. 1997 Dec;33(4):639–652. doi: 10.1016/s0010-9452(08)70722-6. [DOI] [PubMed] [Google Scholar]
  20. Celesia G. G., Bushnell D., Toleikis S. C., Brigell M. G. Cortical blindness and residual vision: is the "second" visual system in humans capable of more than rudimentary visual perception? Neurology. 1991 Jun;41(6):862–869. doi: 10.1212/wnl.41.6.862. [DOI] [PubMed] [Google Scholar]
  21. Chelazzi L. Serial attention mechanisms in visual search: a critical look at the evidence. Psychol Res. 1999;62(2-3):195–219. doi: 10.1007/s004260050051. [DOI] [PubMed] [Google Scholar]
  22. Chieffi S., Gentilucci M., Allport A., Sasso E., Rizzolatti G. Study of selective reaching and grasping in a patient with unilateral parietal lesion. Dissociated effects of residual spatial neglect. Brain. 1993 Oct;116(Pt 5):1119–1137. doi: 10.1093/brain/116.5.1119. [DOI] [PubMed] [Google Scholar]
  23. Chun M. M., Potter M. C. A two-stage model for multiple target detection in rapid serial visual presentation. J Exp Psychol Hum Percept Perform. 1995 Feb;21(1):109–127. doi: 10.1037//0096-1523.21.1.109. [DOI] [PubMed] [Google Scholar]
  24. Cogan D. G. Congenital ocular motor apraxia. Can J Ophthalmol. 1966 Oct;1(4):253–260. [PubMed] [Google Scholar]
  25. Cohen M. S., Kosslyn S. M., Breiter H. C., DiGirolamo G. J., Thompson W. L., Anderson A. K., Brookheimer S. Y., Rosen B. R., Belliveau J. W. Changes in cortical activity during mental rotation. A mapping study using functional MRI. Brain. 1996 Feb;119(Pt 1):89–100. doi: 10.1093/brain/119.1.89. [DOI] [PubMed] [Google Scholar]
  26. Condé F., Lund J. S., Lewis D. A. The hierarchical development of monkey visual cortical regions as revealed by the maturation of parvalbumin-immunoreactive neurons. Brain Res Dev Brain Res. 1996 Oct 23;96(1-2):261–276. doi: 10.1016/0165-3806(96)00126-5. [DOI] [PubMed] [Google Scholar]
  27. Corbetta M., Miezin F. M., Shulman G. L., Petersen S. E. A PET study of visuospatial attention. J Neurosci. 1993 Mar;13(3):1202–1226. doi: 10.1523/JNEUROSCI.13-03-01202.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Coslett H. B., Saffran E. Simultanagnosia. To see but not two see. Brain. 1991 Aug;114(Pt 4):1523–1545. doi: 10.1093/brain/114.4.1523. [DOI] [PubMed] [Google Scholar]
  29. Cowey A., Stoerig P. The neurobiology of blindsight. Trends Neurosci. 1991 Apr;14(4):140–145. doi: 10.1016/0166-2236(91)90085-9. [DOI] [PubMed] [Google Scholar]
  30. Crick F., Koch C. Are we aware of neural activity in primary visual cortex? Nature. 1995 May 11;375(6527):121–123. doi: 10.1038/375121a0. [DOI] [PubMed] [Google Scholar]
  31. Cutting J. E., Springer K., Braren P. A., Johnson S. H. Wayfinding on foot from information in retinal, not optical, flow. J Exp Psychol Gen. 1992 Mar;121(1):41–72. doi: 10.1037//0096-3445.121.1.41. [DOI] [PubMed] [Google Scholar]
  32. Darling W. G., Rizzo M., Butler A. J. Disordered sensorimotor transformations for reaching following posterior cortical lesions. Neuropsychologia. 2001;39(3):237–254. doi: 10.1016/s0028-3932(00)00113-5. [DOI] [PubMed] [Google Scholar]
  33. Darling W. G., Rizzo M. Developmental lesions of visual cortex influence control of reaching. Neuropsychologia. 2001;39(4):346–351. doi: 10.1016/s0028-3932(00)00142-1. [DOI] [PubMed] [Google Scholar]
  34. Denny-Brown D., Chambers R. A. Physiological aspects of visual perception. I. Functional aspects of visual cortex. Arch Neurol. 1976 Apr;33(4):219–227. doi: 10.1001/archneur.1976.00500040003002. [DOI] [PubMed] [Google Scholar]
  35. Desimone R., Duncan J. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. doi: 10.1146/annurev.ne.18.030195.001205. [DOI] [PubMed] [Google Scholar]
  36. Desimone R. Visual attention mediated by biased competition in extrastriate visual cortex. Philos Trans R Soc Lond B Biol Sci. 1998 Aug 29;353(1373):1245–1255. doi: 10.1098/rstb.1998.0280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. DiFranco D., Muir D. W., Dodwell P. C. Reaching in very young infants. Perception. 1978;7(4):385–392. doi: 10.1068/p070385. [DOI] [PubMed] [Google Scholar]
  38. Ditunno P. L., Mann V. A. Right hemisphere specialization for mental rotation in normals and brain damaged subjects. Cortex. 1990 Jun;26(2):177–188. doi: 10.1016/s0010-9452(13)80349-8. [DOI] [PubMed] [Google Scholar]
  39. Dumoulin S. O., Bittar R. G., Kabani N. J., Baker C. L., Jr, Le Goualher G., Bruce Pike G., Evans A. C. A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. Cereb Cortex. 2000 May;10(5):454–463. doi: 10.1093/cercor/10.5.454. [DOI] [PubMed] [Google Scholar]
  40. Fendrich R., Wessinger C. M., Gazzaniga M. S. Residual vision in a scotoma: implications for blindsight. Science. 1992 Nov 27;258(5087):1489–1491. doi: 10.1126/science.1439839. [DOI] [PubMed] [Google Scholar]
  41. Fisk J. D., Goodale M. A. The effects of unilateral brain damage on visually guided reaching: hemispheric differences in the nature of the deficit. Exp Brain Res. 1988;72(2):425–435. doi: 10.1007/BF00250264. [DOI] [PubMed] [Google Scholar]
  42. Friedman-Hill S. R., Robertson L. C., Treisman A. Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions. Science. 1995 Aug 11;269(5225):853–855. doi: 10.1126/science.7638604. [DOI] [PubMed] [Google Scholar]
  43. Furey M. L., Pietrini P., Alexander G. E., Schapiro M. B., Horwitz B. Cholinergic enhancement improves performance on working memory by modulating the functional activity in distinct brain regions: a positron emission tomography regional cerebral blood flow study in healthy humans. Brain Res Bull. 2000 Feb;51(3):213–218. doi: 10.1016/s0361-9230(99)00219-1. [DOI] [PubMed] [Google Scholar]
  44. Georgopoulos A. P. Higher order motor control. Annu Rev Neurosci. 1991;14:361–377. doi: 10.1146/annurev.ne.14.030191.002045. [DOI] [PubMed] [Google Scholar]
  45. Georgopoulos A. P. On reaching. Annu Rev Neurosci. 1986;9:147–170. doi: 10.1146/annurev.ne.09.030186.001051. [DOI] [PubMed] [Google Scholar]
  46. Ghez C., Gordon J., Ghilardi M. F. Impairments of reaching movements in patients without proprioception. II. Effects of visual information on accuracy. J Neurophysiol. 1995 Jan;73(1):361–372. doi: 10.1152/jn.1995.73.1.361. [DOI] [PubMed] [Google Scholar]
  47. Girotti F., Milanese C., Casazza M., Allegranza A., Corridori F., Avanzini G. Oculomotor disturbances in Balint's syndrome: anatomoclinical findings and electrooculographic analysis in a case. Cortex. 1982 Dec;18(4):603–614. doi: 10.1016/s0010-9452(82)80057-9. [DOI] [PubMed] [Google Scholar]
  48. Goldberg G., Bloom K. K. The alien hand sign. Localization, lateralization and recovery. Am J Phys Med Rehabil. 1990 Oct;69(5):228–238. doi: 10.1097/00002060-199010000-00002. [DOI] [PubMed] [Google Scholar]
  49. Goodale M. A., Milner A. D., Jakobson L. S., Carey D. P. A neurological dissociation between perceiving objects and grasping them. Nature. 1991 Jan 10;349(6305):154–156. doi: 10.1038/349154a0. [DOI] [PubMed] [Google Scholar]
  50. Guitton D., Buchtel H. A., Douglas R. M. Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Exp Brain Res. 1985;58(3):455–472. doi: 10.1007/BF00235863. [DOI] [PubMed] [Google Scholar]
  51. HECAEN H., DE AJURIAGUERRA J. Balint's syndrome (psychic paralysis of visual fixation) and its minor forms. Brain. 1954;77(3):373–400. doi: 10.1093/brain/77.3.373. [DOI] [PubMed] [Google Scholar]
  52. Haaxma R., Kuypers H. G. Intrahemispheric cortical connexions and visual guidance of hand and finger movements in the rhusus monkey. Brain. 1975 Jun;98(2):239–260. doi: 10.1093/brain/98.2.239. [DOI] [PubMed] [Google Scholar]
  53. Hadjikhani N., Liu A. K., Dale A. M., Cavanagh P., Tootell R. B. Retinotopy and color sensitivity in human visual cortical area V8. Nat Neurosci. 1998 Jul;1(3):235–241. doi: 10.1038/681. [DOI] [PubMed] [Google Scholar]
  54. Hof P. R., Bouras C., Constantinidis J., Morrison J. H. Selective disconnection of specific visual association pathways in cases of Alzheimer's disease presenting with Balint's syndrome. J Neuropathol Exp Neurol. 1990 Mar;49(2):168–184. doi: 10.1097/00005072-199003000-00008. [DOI] [PubMed] [Google Scholar]
  55. Holmes G. DISTURBANCES OF VISUAL ORIENTATION. Br J Ophthalmol. 1918 Sep;2(9):449–468. doi: 10.1136/bjo.2.9.449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Howard L. A., Tipper S. P. Hand deviations away from visual cues: indirect evidence for inhibition. Exp Brain Res. 1997 Jan;113(1):144–152. doi: 10.1007/BF02454150. [DOI] [PubMed] [Google Scholar]
  57. Husain M., Shapiro K., Martin J., Kennard C. Abnormal temporal dynamics of visual attention in spatial neglect patients. Nature. 1997 Jan 9;385(6612):154–156. doi: 10.1038/385154a0. [DOI] [PubMed] [Google Scholar]
  58. Husain M., Stein J. Rezsö Bálint and his most celebrated case. Arch Neurol. 1988 Jan;45(1):89–93. doi: 10.1001/archneur.1988.00520250095029. [DOI] [PubMed] [Google Scholar]
  59. Jackson S. R., Jackson G. M., Rosicky J. Are non-relevant objects represented in working memory? The effect of non-target objects on reach and grasp kinematics. Exp Brain Res. 1995;102(3):519–530. doi: 10.1007/BF00230656. [DOI] [PubMed] [Google Scholar]
  60. Jeannerod M., Arbib M. A., Rizzolatti G., Sakata H. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci. 1995 Jul;18(7):314–320. [PubMed] [Google Scholar]
  61. Jeannerod M., Decety J., Michel F. Impairment of grasping movements following a bilateral posterior parietal lesion. Neuropsychologia. 1994 Apr;32(4):369–380. doi: 10.1016/0028-3932(94)90084-1. [DOI] [PubMed] [Google Scholar]
  62. Jiang Y., Haxby J. V., Martin A., Ungerleider L. G., Parasuraman R. Complementary neural mechanisms for tracking items in human working memory. Science. 2000 Jan 28;287(5453):643–646. doi: 10.1126/science.287.5453.643. [DOI] [PubMed] [Google Scholar]
  63. Johnston J. L., Sharpe J. A., Morrow M. J. Spasm of fixation: a quantitative study. J Neurol Sci. 1992 Feb;107(2):166–171. doi: 10.1016/0022-510x(92)90285-s. [DOI] [PubMed] [Google Scholar]
  64. KINSBOURNE M., WARRINGTON E. K. A STUDY OF VISUAL PERSERVATION. J Neurol Neurosurg Psychiatry. 1963 Oct;26:468–475. doi: 10.1136/jnnp.26.5.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Kolb F. C., Braun J. Blindsight in normal observers. Nature. 1995 Sep 28;377(6547):336–338. doi: 10.1038/377336a0. [DOI] [PubMed] [Google Scholar]
  66. Kritikos A., Bennett K. M., Dunai J., Castiello U. Interference from distractors in reach-to-grasp movements. Q J Exp Psychol A. 2000 Feb;53(1):131–151. doi: 10.1080/713755874. [DOI] [PubMed] [Google Scholar]
  67. LURIA A. R. Disorders of "simultaneous perception" in a case of bilateral occipito-parietal brain injury. Brain. 1959 Sep;82:437–449. doi: 10.1093/brain/82.3.437. [DOI] [PubMed] [Google Scholar]
  68. LURIA A. R., PRAVDINA-VINARSKAYA E. N., YARBUSS A. L. Disorders of ocular movement in a case of simultanagnosia. Brain. 1963 Jun;86:219–228. doi: 10.1093/brain/86.2.219. [DOI] [PubMed] [Google Scholar]
  69. Lawson M. L., Crewther D. P., Duke C. C., Henry L., Kiely P. M., West S. J., Crewther S. G. Attentional blink in global versus local attentional modes. Aust N Z J Ophthalmol. 1998 May;26 (Suppl 1):S88–S90. doi: 10.1111/j.1442-9071.1998.tb01384.x. [DOI] [PubMed] [Google Scholar]
  70. Lee S. H., Blake R. Visual form created solely from temporal structure. Science. 1999 May 14;284(5417):1165–1168. doi: 10.1126/science.284.5417.1165. [DOI] [PubMed] [Google Scholar]
  71. Leonard G., Milner B. Recall of self-generated arm movements by patients with unilateral cortical excisions. Neuropsychologia. 1995 May;33(5):611–622. doi: 10.1016/0028-3932(95)00005-n. [DOI] [PubMed] [Google Scholar]
  72. Livingstone M. S., Hubel D. H. Psychophysical evidence for separate channels for the perception of form, color, movement, and depth. J Neurosci. 1987 Nov;7(11):3416–3468. doi: 10.1523/JNEUROSCI.07-11-03416.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  73. Luck S. J., Chelazzi L., Hillyard S. A., Desimone R. Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. J Neurophysiol. 1997 Jan;77(1):24–42. doi: 10.1152/jn.1997.77.1.24. [DOI] [PubMed] [Google Scholar]
  74. Luck S. J., Vogel E. K., Shapiro K. L. Word meanings can be accessed but not reported during the attentional blink. Nature. 1996 Oct 17;383(6601):616–618. doi: 10.1038/383616a0. [DOI] [PubMed] [Google Scholar]
  75. Magnussen S., Greenlee M. W., Asplund R., Dyrnes S. Stimulus-specific mechanisms of visual short-term memory. Vision Res. 1991;31(7-8):1213–1219. doi: 10.1016/0042-6989(91)90046-8. [DOI] [PubMed] [Google Scholar]
  76. Maki W. S., Couture T., Frigen K., Lien D. Sources of the attentional blink during rapid serial visual presentation: perceptual interference and retrieval competition. J Exp Psychol Hum Percept Perform. 1997 Oct;23(5):1393–1411. doi: 10.1037//0096-1523.23.5.1393. [DOI] [PubMed] [Google Scholar]
  77. Marcar V. L., Xiao D. K., Raiguel S. E., Maes H., Orban G. A. Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey. J Neurophysiol. 1995 Sep;74(3):1258–1270. doi: 10.1152/jn.1995.74.3.1258. [DOI] [PubMed] [Google Scholar]
  78. Marr D., Poggio T. A computational theory of human stereo vision. Proc R Soc Lond B Biol Sci. 1979 May 23;204(1156):301–328. doi: 10.1098/rspb.1979.0029. [DOI] [PubMed] [Google Scholar]
  79. Marshall J. C., Halligan P. W. Blindsight and insight in visuo-spatial neglect. Nature. 1988 Dec 22;336(6201):766–767. doi: 10.1038/336766a0. [DOI] [PubMed] [Google Scholar]
  80. Meeres S. L., Graves R. E. Localization of unseen visual stimuli by humans with normal vision. Neuropsychologia. 1990;28(12):1231–1237. doi: 10.1016/0028-3932(90)90039-q. [DOI] [PubMed] [Google Scholar]
  81. Mendez M. F., Mendez M. A., Martin R., Smyth K. A., Whitehouse P. J. Complex visual disturbances in Alzheimer's disease. Neurology. 1990 Mar;40(3 Pt 1):439–443. doi: 10.1212/wnl.40.3_part_1.439. [DOI] [PubMed] [Google Scholar]
  82. Mennemeier M. S., Chatterjee A., Watson R. T., Wertman E., Carter L. P., Heilman K. M. Contributions of the parietal and frontal lobes to sustained attention and habituation. Neuropsychologia. 1994 Jun;32(6):703–716. doi: 10.1016/0028-3932(94)90030-2. [DOI] [PubMed] [Google Scholar]
  83. Moran J., Desimone R. Selective attention gates visual processing in the extrastriate cortex. Science. 1985 Aug 23;229(4715):782–784. doi: 10.1126/science.4023713. [DOI] [PubMed] [Google Scholar]
  84. Morrow M. J., Sharpe J. A. Retinotopic and directional deficits of smooth pursuit initiation after posterior cerebral hemispheric lesions. Neurology. 1993 Mar;43(3 Pt 1):595–603. doi: 10.1212/wnl.43.3_part_1.595. [DOI] [PubMed] [Google Scholar]
  85. Mountcastle V. B., Lynch J. C., Georgopoulos A., Sakata H., Acuna C. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol. 1975 Jul;38(4):871–908. doi: 10.1152/jn.1975.38.4.871. [DOI] [PubMed] [Google Scholar]
  86. Nakayama K. Biological image motion processing: a review. Vision Res. 1985;25(5):625–660. doi: 10.1016/0042-6989(85)90171-3. [DOI] [PubMed] [Google Scholar]
  87. Nawrot M., Blake R. A neural network model of kinetic depth. Vis Neurosci. 1991 Mar;6(3):219–227. doi: 10.1017/s0952523800006234. [DOI] [PubMed] [Google Scholar]
  88. Nawrot M., Rizzo M. Motion perception deficits from midline cerebellar lesions in human. Vision Res. 1995 Mar;35(5):723–731. doi: 10.1016/0042-6989(94)00168-l. [DOI] [PubMed] [Google Scholar]
  89. Nawrot M., Rizzo M., Rockland K. S., Howard M. A transient deficit of motion perception in human. Vision Res. 2000;40(24):3435–3446. doi: 10.1016/s0042-6989(00)00177-2. [DOI] [PubMed] [Google Scholar]
  90. Nawrot M., Shannon E., Rizzo M. The relative efficacy of cues for two-dimensional shape perception. Vision Res. 1996 Apr;36(8):1141–1152. doi: 10.1016/0042-6989(95)00173-5. [DOI] [PubMed] [Google Scholar]
  91. O'Regan J. K. Solving the "real" mysteries of visual perception: the world as an outside memory. Can J Psychol. 1992 Sep;46(3):461–488. doi: 10.1037/h0084327. [DOI] [PubMed] [Google Scholar]
  92. Ogren M. P., Mateer C. A., Wyler A. R. Alterations in visually related eye movements following left pulvinar damage in man. Neuropsychologia. 1984;22(2):187–196. doi: 10.1016/0028-3932(84)90061-7. [DOI] [PubMed] [Google Scholar]
  93. Orban G. A., Dupont P., De Bruyn B., Vogels R., Vandenberghe R., Mortelmans L. A motion area in human visual cortex. Proc Natl Acad Sci U S A. 1995 Feb 14;92(4):993–997. doi: 10.1073/pnas.92.4.993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Palmer S. E. Common region: a new principle of perceptual grouping. Cogn Psychol. 1992 Jul;24(3):436–447. doi: 10.1016/0010-0285(92)90014-s. [DOI] [PubMed] [Google Scholar]
  95. Perenin M. T., Vighetto A. Optic ataxia: a specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain. 1988 Jun;111(Pt 3):643–674. doi: 10.1093/brain/111.3.643. [DOI] [PubMed] [Google Scholar]
  96. Posner M. I. Orienting of attention. Q J Exp Psychol. 1980 Feb;32(1):3–25. doi: 10.1080/00335558008248231. [DOI] [PubMed] [Google Scholar]
  97. Posner M. I., Petersen S. E., Fox P. T., Raichle M. E. Localization of cognitive operations in the human brain. Science. 1988 Jun 17;240(4859):1627–1631. doi: 10.1126/science.3289116. [DOI] [PubMed] [Google Scholar]
  98. Posner M. I., Walker J. A., Friedrich F. J., Rafal R. D. Effects of parietal injury on covert orienting of attention. J Neurosci. 1984 Jul;4(7):1863–1874. doi: 10.1523/JNEUROSCI.04-07-01863.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Ptito A., Lepore F., Ptito M., Lassonde M. Target detection and movement discrimination in the blind field of hemispherectomized patients. Brain. 1991 Feb;114(Pt 1B):497–512. doi: 10.1093/brain/114.1.497. [DOI] [PubMed] [Google Scholar]
  100. Raymond J. E., Shapiro K. L., Arnell K. M. Temporary suppression of visual processing in an RSVP task: an attentional blink? . J Exp Psychol Hum Percept Perform. 1992 Aug;18(3):849–860. doi: 10.1037//0096-1523.18.3.849. [DOI] [PubMed] [Google Scholar]
  101. Reinach S. J., Rizzo M., McGehee D. V. Driving with Alzheimer disease: the anatomy of a crash. Alzheimer Dis Assoc Disord. 1997 Jun;11 (Suppl 1):21–27. [PubMed] [Google Scholar]
  102. Reynolds J. H., Chelazzi L., Desimone R. Competitive mechanisms subserve attention in macaque areas V2 and V4. J Neurosci. 1999 Mar 1;19(5):1736–1753. doi: 10.1523/JNEUROSCI.19-05-01736.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Riley D. E., Lang A. E., Lewis A., Resch L., Ashby P., Hornykiewicz O., Black S. Cortical-basal ganglionic degeneration. Neurology. 1990 Aug;40(8):1203–1212. doi: 10.1212/wnl.40.8.1203. [DOI] [PubMed] [Google Scholar]
  104. Rizzo M. 'Bálint's syndrome' and associated visuospatial disorders. Baillieres Clin Neurol. 1993 Aug;2(2):415–437. [PubMed] [Google Scholar]
  105. Rizzo M., Akutsu H., Dawson J. Increased attentional blink after focal cerebral lesions. Neurology. 2001 Sep 11;57(5):795–800. doi: 10.1212/wnl.57.5.795. [DOI] [PubMed] [Google Scholar]
  106. Rizzo M., Anderson S. W., Dawson J., Myers R., Ball K. Visual attention impairments in Alzheimer's disease. Neurology. 2000 May 23;54(10):1954–1959. doi: 10.1212/wnl.54.10.1954. [DOI] [PubMed] [Google Scholar]
  107. Rizzo M., Darling W. Reaching with cerebral tunnel vision. Neuropsychologia. 1997 Jan;35(1):53–63. doi: 10.1016/s0028-3932(96)00053-x. [DOI] [PubMed] [Google Scholar]
  108. Rizzo M., Hurtig R. Looking but not seeing: attention, perception, and eye movements in simultanagnosia. Neurology. 1987 Oct;37(10):1642–1648. doi: 10.1212/wnl.37.10.1642. [DOI] [PubMed] [Google Scholar]
  109. Rizzo M., Nawrot M. Perception of movement and shape in Alzheimer's disease. Brain. 1998 Dec;121(Pt 12):2259–2270. doi: 10.1093/brain/121.12.2259. [DOI] [PubMed] [Google Scholar]
  110. Rizzo M., Nawrot M., Zihl J. Motion and shape perception in cerebral akinetopsia. Brain. 1995 Oct;118(Pt 5):1105–1127. doi: 10.1093/brain/118.5.1105. [DOI] [PubMed] [Google Scholar]
  111. Rizzo M., Robin D. A. Bilateral effects of unilateral visual cortex lesions in human. Brain. 1996 Jun;119(Pt 3):951–963. doi: 10.1093/brain/119.3.951. [DOI] [PubMed] [Google Scholar]
  112. Rizzo M., Robin D. A. Simultanagnosia: a defect of sustained attention yields insights on visual information processing. Neurology. 1990 Mar;40(3 Pt 1):447–455. doi: 10.1212/wnl.40.3_part_1.447. [DOI] [PubMed] [Google Scholar]
  113. Rizzo M., Rotella D., Darling W. Troubled reaching after right occipito-temporal damage. Neuropsychologia. 1992 Aug;30(8):711–722. doi: 10.1016/0028-3932(92)90041-j. [DOI] [PubMed] [Google Scholar]
  114. Rizzo M., Smith V., Pokorny J., Damasio A. R. Color perception profiles in central achromatopsia. Neurology. 1993 May;43(5):995–1001. doi: 10.1212/wnl.43.5.995. [DOI] [PubMed] [Google Scholar]
  115. Rogers B. J., Collett T. S. The appearance of surfaces specified by motion parallax and binocular disparity. Q J Exp Psychol A. 1989 Nov;41(4):697–717. doi: 10.1080/14640748908402390. [DOI] [PubMed] [Google Scholar]
  116. Rogers B. J. Motion parallax and other dynamic cues for depth in humans. Rev Oculomot Res. 1993;5:119–137. [PubMed] [Google Scholar]
  117. Rogers B., Graham M. Motion parallax as an independent cue for depth perception. Perception. 1979;8(2):125–134. doi: 10.1068/p080125. [DOI] [PubMed] [Google Scholar]
  118. SYMONDS C., MACKENZIE I. Bilateral loss of vision from cerebral infarction. Brain. 1957 Dec;80(4):415–455. doi: 10.1093/brain/80.4.415. [DOI] [PubMed] [Google Scholar]
  119. Schacter D. L. Implicit knowledge: new perspectives on unconscious processes. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11113–11117. doi: 10.1073/pnas.89.23.11113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Schiller P. H., Logothetis N. K., Charles E. R. Role of the color-opponent and broad-band channels in vision. Vis Neurosci. 1990 Oct;5(4):321–346. doi: 10.1017/s0952523800000420. [DOI] [PubMed] [Google Scholar]
  121. Schiller P. H. The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Vis Neurosci. 1993 Jul-Aug;10(4):717–746. doi: 10.1017/s0952523800005423. [DOI] [PubMed] [Google Scholar]
  122. Schmahmann J. D., Pandya D. N. Prelunate, occipitotemporal, and parahippocampal projections to the basis pontis in rhesus monkey. J Comp Neurol. 1993 Nov 1;337(1):94–112. doi: 10.1002/cne.903370107. [DOI] [PubMed] [Google Scholar]
  123. Shapiro K. L., Raymond J. E., Arnell K. M. Attention to visual pattern information produces the attentional blink in rapid serial visual presentation. J Exp Psychol Hum Percept Perform. 1994 Apr;20(2):357–371. doi: 10.1037//0096-1523.20.2.357. [DOI] [PubMed] [Google Scholar]
  124. Shepard R. N., Metzler J. Mental rotation of three-dimensional objects. Science. 1971 Feb 19;171(3972):701–703. doi: 10.1126/science.171.3972.701. [DOI] [PubMed] [Google Scholar]
  125. Soechting J. F., Flanders M. Errors in pointing are due to approximations in sensorimotor transformations. J Neurophysiol. 1989 Aug;62(2):595–608. doi: 10.1152/jn.1989.62.2.595. [DOI] [PubMed] [Google Scholar]
  126. Soechting J. F., Flanders M. Moving in three-dimensional space: frames of reference, vectors, and coordinate systems. Annu Rev Neurosci. 1992;15:167–191. doi: 10.1146/annurev.ne.15.030192.001123. [DOI] [PubMed] [Google Scholar]
  127. Soechting J. F., Flanders M. Sensorimotor representations for pointing to targets in three-dimensional space. J Neurophysiol. 1989 Aug;62(2):582–594. doi: 10.1152/jn.1989.62.2.582. [DOI] [PubMed] [Google Scholar]
  128. Sternberg S. High-speed scanning in human memory. Science. 1966 Aug 5;153(3736):652–654. doi: 10.1126/science.153.3736.652. [DOI] [PubMed] [Google Scholar]
  129. Stoerig P., Cowey A. Increment-threshold spectral sensitivity in blindsight. Evidence for colour opponency. Brain. 1991 Jun;114(Pt 3):1487–1512. doi: 10.1093/brain/114.3.1487. [DOI] [PubMed] [Google Scholar]
  130. Taira M., Mine S., Georgopoulos A. P., Murata A., Sakata H. Parietal cortex neurons of the monkey related to the visual guidance of hand movement. Exp Brain Res. 1990;83(1):29–36. doi: 10.1007/BF00232190. [DOI] [PubMed] [Google Scholar]
  131. Thurston S. E., Leigh R. J., Crawford T., Thompson A., Kennard C. Two distinct deficits of visual tracking caused by unilateral lesions of cerebral cortex in humans. Ann Neurol. 1988 Mar;23(3):266–273. doi: 10.1002/ana.410230309. [DOI] [PubMed] [Google Scholar]
  132. Tittle J. S., Braunstein M. L. Recovery of 3-D shape from binocular disparity and structure from motion. Percept Psychophys. 1993 Aug;54(2):157–169. doi: 10.3758/bf03211751. [DOI] [PubMed] [Google Scholar]
  133. Tootell R. B., Taylor J. B. Anatomical evidence for MT and additional cortical visual areas in humans. Cereb Cortex. 1995 Jan-Feb;5(1):39–55. doi: 10.1093/cercor/5.1.39. [DOI] [PubMed] [Google Scholar]
  134. Treisman A. M., Gelade G. A feature-integration theory of attention. Cogn Psychol. 1980 Jan;12(1):97–136. doi: 10.1016/0010-0285(80)90005-5. [DOI] [PubMed] [Google Scholar]
  135. Ungerleider L. G., Courtney S. M., Haxby J. V. A neural system for human visual working memory. Proc Natl Acad Sci U S A. 1998 Feb 3;95(3):883–890. doi: 10.1073/pnas.95.3.883. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Vecera S. P., Behrmann M., Filapek J. C. Attending to the parts of a single object: part-based selection limitations. Percept Psychophys. 2001 Feb;63(2):308–321. doi: 10.3758/bf03194471. [DOI] [PubMed] [Google Scholar]
  137. Vogel E. K., Luck S. J., Shapiro K. L. Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. J Exp Psychol Hum Percept Perform. 1998 Dec;24(6):1656–1674. doi: 10.1037//0096-1523.24.6.1656. [DOI] [PubMed] [Google Scholar]
  138. WALLACH H., O'CONNELL D. N. The kinetic depth effect. J Exp Psychol. 1953 Apr;45(4):205–217. doi: 10.1037/h0056880. [DOI] [PubMed] [Google Scholar]
  139. Watson J. D., Myers R., Frackowiak R. S., Hajnal J. V., Woods R. P., Mazziotta J. C., Shipp S., Zeki S. Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. Cereb Cortex. 1993 Mar-Apr;3(2):79–94. doi: 10.1093/cercor/3.2.79. [DOI] [PubMed] [Google Scholar]
  140. Weiskrantz L. Residual vision in a scotoma. A follow-up study of 'form' discrimination. Brain. 1987 Feb;110(Pt 1):77–92. doi: 10.1093/brain/110.1.77. [DOI] [PubMed] [Google Scholar]
  141. Weiskrantz L. The Ferrier lecture, 1989. Outlooks for blindsight: explicit methodologies for implicit processes. Proc R Soc Lond B Biol Sci. 1990 Apr 23;239(1296):247–278. doi: 10.1098/rspb.1990.0016. [DOI] [PubMed] [Google Scholar]
  142. Yamazaki T., Kamijo K., Kenmochi A., Fukuzumi S., Kiyuna T., Takaki Y., Kuroiwa Y. Multiple equivalent current dipole source localization of visual event-related potentials during oddball paradigm with motor response. Brain Topogr. 2000 Spring;12(3):159–175. doi: 10.1023/a:1023467806268. [DOI] [PubMed] [Google Scholar]
  143. Zihl J., von Cramon D., Mai N. Selective disturbance of movement vision after bilateral brain damage. Brain. 1983 Jun;106(Pt 2):313–340. doi: 10.1093/brain/106.2.313. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES