Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Feb;64(2):441–447. doi: 10.1128/iai.64.2.441-447.1996

Mycoplasma arthritidis mitogen up-regulates human NK cell activity.

J A D'Orazio 1, B C Cole 1, J Stein-Streilein 1
PMCID: PMC173783  PMID: 8550189

Abstract

While the effects of superantigens on T lymphocytes are well characterized, how superantigens interact with other immune cells is less clear. This report examines the effects of Mycoplasma arthritidis mitogen (MAM) on human natural killer (NK) cell activity. Incubation of peripheral blood mononuclear cells (PBMC) with MAM for 16 to 20 h augmented NK cytotoxicity (against K562) in a dose-dependent manner (P < or = 0.05). Superantigen-dependent cellular cytotoxicity, an activity of superantigen-activated cytotoxic T cells, was not involved in lysis of K562 cells because the erythroleukemic tumor target cells expressed no class II major histocompatibility complex by fluorescence-activated cell sorter analysis. Kinetic experiments showed that the largest increase in NK activity induced by MAM occurred within 48 h. Incubation with MAM caused a portion of NK cells to become adherent to tissue culture flasks, a quality associated with activation, and augmented NK activity was found in both adherent and nonadherent subpopulations. Experiments using cytokine-specific neutralizing antibodies showed that interleukin-2 contributed to enhancement of the NK activity observed in superantigen-stimulated PBMC. Interestingly, MAM was able to augment NK lysis of highly purified NK (CD56+) cells in the absence of other immune cells in 9 of 12 blood specimens, with the augmented lytic activity ranging from 110 to 170% of unstimulated NK activity. In summary, data presented in this report show for the first time that MAM affects human NK cells directly by increasing their lytic capacity and indirectly in PBMC as a consequence of cytokines produced by T cells. Results of this work suggest that, in vivo, one consequence of interaction with superantigen-secreting microorganisms may be up-regulation of NK lytic activity. These findings may have clinical application as a means of generating augmented NK effector cells useful in the immunotherapy of parasitic infections or neoplasms.

Full Text

The Full Text of this article is available as a PDF (247.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Acharya K. R., Passalacqua E. F., Jones E. Y., Harlos K., Stuart D. I., Brehm R. D., Tranter H. S. Structural basis of superantigen action inferred from crystal structure of toxic-shock syndrome toxin-1. Nature. 1994 Jan 6;367(6458):94–97. doi: 10.1038/367094a0. [DOI] [PubMed] [Google Scholar]
  2. Atkin C. L., Cole B. C., Sullivan G. J., Washburn L. R., Wiley B. B. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. V. A small basic protein from culture supernatants is a potent T cell mitogen. J Immunol. 1986 Sep 1;137(5):1581–1589. [PubMed] [Google Scholar]
  3. Atkin C. L., Wei S., Cole B. C. The Mycoplasma arthritidis superantigen MAM: purification and identification of an active peptide. Infect Immun. 1994 Dec;62(12):5367–5375. doi: 10.1128/iai.62.12.5367-5375.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belfrage H., Bhiladvala P., Hedlund G., Dohlsten M., Kalland T. Combined activation of murine lymphocytes with staphylococcal enterotoxin and interleukin-2 results in additive cytotoxic activity. Cancer Immunol Immunother. 1994 Apr;38(4):265–271. doi: 10.1007/BF01533518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bianco C., Patrick R., Nussenzweig V. A population of lymphocytes bearing a membrane receptor for antigen-antibody-complement complexes. I. Separation and characterization. J Exp Med. 1970 Oct 1;132(4):702–720. doi: 10.1084/jem.132.4.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brooks C. F., Moore M. Presentation of a soluble bacterial antigen and cell-surface alloantigens by large granular lymphocytes (LGL) in comparison with monocytes. Immunology. 1986 Jul;58(3):343–350. [PMC free article] [PubMed] [Google Scholar]
  7. Böyum A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand J Clin Lab Invest Suppl. 1968;97:77–89. [PubMed] [Google Scholar]
  8. Callewaert D. M., Smeekens S. P., Mahle N. H. Improved quantification of cellular cytotoxicity reactions: determination of kinetic parameters for natural cytotoxicity by a distribution-free procedure. J Immunol Methods. 1982;49(1):25–37. doi: 10.1016/0022-1759(82)90363-5. [DOI] [PubMed] [Google Scholar]
  9. Cannon G. W., Cole B. C., Ward J. R. Differential effects of in vitro gold sodium thiomalate on the stimulation of human peripheral blood mononuclear cells by Mycoplasma arthritidis T cell mitogen, concanavalin A and phytohemagglutinin. J Rheumatol. 1986 Feb;13(1):52–57. [PubMed] [Google Scholar]
  10. Chang H. L., Zaroukian M. H., Morrison M. H., Esselman W. J. Adherent lymphokine-activated natural killer cells in normal and severe combined immunodeficiency mice: large granular lymphocytes with natural killer cell phenotype and high cytolytic activity. Nat Immun Cell Growth Regul. 1989;8(2):89–99. [PubMed] [Google Scholar]
  11. Chatila T., Geha R. S. Signal transduction by microbial superantigens via MHC class II molecules. Immunol Rev. 1993 Feb;131:43–59. doi: 10.1111/j.1600-065x.1993.tb01529.x. [DOI] [PubMed] [Google Scholar]
  12. Cole B. C., Atkin C. L. The Mycoplasma arthritidis T-cell mitogen, MAM: a model superantigen. Immunol Today. 1991 Aug;12(8):271–276. doi: 10.1016/0167-5699(91)90125-D. [DOI] [PubMed] [Google Scholar]
  13. Cole B. C., David C. S., Lynch D. H., Kartchner D. R. The use of transfected fibroblasts and transgenic mice establishes that stimulation of T cells by the Mycoplasma arthritidis mitogen is mediated by E alpha. J Immunol. 1990 Jan 15;144(2):420–424. [PubMed] [Google Scholar]
  14. Cole B. C., Daynes R. A., Ward J. R. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. I. Transformation is associated with an H-2-linked gene that maps to the I-E/I-C subregion. J Immunol. 1981 Nov;127(5):1931–1936. [PubMed] [Google Scholar]
  15. Cole B. C., Daynes R. A., Ward J. R. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. III. Ir gene control of lymphocyte transformation correlates with binding of the mitogen to specific Ia-bearing cells. J Immunol. 1982 Oct;129(4):1352–1359. [PubMed] [Google Scholar]
  16. Cole B. C., Kartchner D. R., Wells D. J. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis (MAM). VIII. Selective activation of T cells expressing distinct V beta T cell receptors from various strains of mice by the "superantigen" MAM. J Immunol. 1990 Jan 15;144(2):425–431. [PubMed] [Google Scholar]
  17. Cole B. C., Kartchner D. R., Wells D. J. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. VII. Responsiveness is associated with expression of a product(s) of the V beta 8 gene family present on the T cell receptor alpha/beta for antigen. J Immunol. 1989 Jun 15;142(12):4131–4137. [PubMed] [Google Scholar]
  18. Cole B. C., Sullivan G. J., Daynes R. A., Sayed I. A., Ward J. R. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. II. Cellular requirements for T cell transformation mediated by a soluble Mycoplasma mitogen. J Immunol. 1982 May;128(5):2013–2018. [PubMed] [Google Scholar]
  19. Cole B. C., Tuller J. W., Sullivan G. J. Stimulation of mouse lymphocytes by a mitogen derived from Mycoplasma arthritidis. VI. Detection of a non-MHC gene(s) in the E alpha-bearing RIIIS mouse strain that is associated with a specific lack of T cell responses to the M. arthritidis soluble mitogen. J Immunol. 1987 Aug 1;139(3):927–935. [PubMed] [Google Scholar]
  20. D'Orazio J. A., Burke G. W., Stein-Streilein J. Staphylococcal enterotoxin B activates purified NK cells to secrete IFN-gamma but requires T lymphocytes to augment NK cytotoxicity. J Immunol. 1995 Feb 1;154(3):1014–1023. [PubMed] [Google Scholar]
  21. Dannemann B. R., Morris V. A., Araujo F. G., Remington J. S. Assessment of human natural killer and lymphokine-activated killer cell cytotoxicity against Toxoplasma gondii trophozoites and brain cysts. J Immunol. 1989 Oct 15;143(8):2684–2691. [PubMed] [Google Scholar]
  22. De Lerma Barbaro A., Sartoris S., Tosi G., Nicolis M., Accolla R. S. Evidence for a specific post-transcriptional mechanism controlling the expression of HLA-DQ, but not -DR and -DP, molecules. J Immunol. 1994 Nov 15;153(10):4530–4538. [PubMed] [Google Scholar]
  23. Dellabona P., Peccoud J., Kappler J., Marrack P., Benoist C., Mathis D. Superantigens interact with MHC class II molecules outside of the antigen groove. Cell. 1990 Sep 21;62(6):1115–1121. doi: 10.1016/0092-8674(90)90388-u. [DOI] [PubMed] [Google Scholar]
  24. Dohlsten M., Abrahmsén L., Björk P., Lando P. A., Hedlund G., Forsberg G., Brodin T., Gascoigne N. R., Förberg C., Lind P. Monoclonal antibody-superantigen fusion proteins: tumor-specific agents for T-cell-based tumor therapy. Proc Natl Acad Sci U S A. 1994 Sep 13;91(19):8945–8949. doi: 10.1073/pnas.91.19.8945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Drake C. G., Kotzin B. L. Superantigens: biology, immunology, and potential role in disease. J Clin Immunol. 1992 May;12(3):149–162. doi: 10.1007/BF00918083. [DOI] [PubMed] [Google Scholar]
  26. Epstein M. A., Achong B. G., Barr Y. M., Zajac B., Henle G., Henle W. Morphological and virological investigations on cultured Burkitt tumor lymphoblasts (strain Raji). J Natl Cancer Inst. 1966 Oct;37(4):547–559. [PubMed] [Google Scholar]
  27. Figlin R. A., Pierce W. C., Belldegrun A. Combination biologic therapy with interleukin-2 and interferon-alfa in the outpatient treatment of metastatic renal cell carcinoma. Semin Oncol. 1993 Dec;20(6 Suppl 9):11–15. [PubMed] [Google Scholar]
  28. Fleischer B., Gerardy-Schahn R., Metzroth B., Carrel S., Gerlach D., Köhler W. An evolutionary conserved mechanism of T cell activation by microbial toxins. Evidence for different affinities of T cell receptor-toxin interaction. J Immunol. 1991 Jan 1;146(1):11–17. [PubMed] [Google Scholar]
  29. Fleischer B. The human T cell response to mitogenic microbial exotoxins. Curr Top Microbiol Immunol. 1991;174:53–62. doi: 10.1007/978-3-642-50998-8_4. [DOI] [PubMed] [Google Scholar]
  30. Fuleihan R., Mourad W., Geha R. S., Chatila T. Engagement of MHC-class II molecules by staphylococcal exotoxins delivers a comitogenic signal to human B cells. J Immunol. 1991 Mar 1;146(5):1661–1666. [PubMed] [Google Scholar]
  31. Garcia-Peñarrubia P., Koster F. T., Kelley R. O., McDowell T. D., Bankhurst A. D. Antibacterial activity of human natural killer cells. J Exp Med. 1989 Jan 1;169(1):99–113. doi: 10.1084/jem.169.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Gismondi A., Mainiero F., Morrone S., Palmieri G., Piccoli M., Frati L., Santoni A. Triggering through CD16 or phorbol esters enhances adhesion of NK cells to laminin via very late antigen 6. J Exp Med. 1992 Nov 1;176(5):1251–1257. doi: 10.1084/jem.176.5.1251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Hawkins M. J. Interleukin-2 antitumor and effector cell responses. Semin Oncol. 1993 Dec;20(6 Suppl 9):52–59. [PubMed] [Google Scholar]
  34. Herman A., Kappler J. W., Marrack P., Pullen A. M. Superantigens: mechanism of T-cell stimulation and role in immune responses. Annu Rev Immunol. 1991;9:745–772. doi: 10.1146/annurev.iy.09.040191.003525. [DOI] [PubMed] [Google Scholar]
  35. Kirchner H., Giebler D., Keyssner K., Nicklas W. Lymphoproliferation induced in mouse spleen cells by Mycoplasma arthritidis mitogen. Reversal of the defect of nonresponder mice. Scand J Immunol. 1984 Aug;20(2):133–139. doi: 10.1111/j.1365-3083.1984.tb00986.x. [DOI] [PubMed] [Google Scholar]
  36. Klein E., Ben-Bassat H., Neumann H., Ralph P., Zeuthen J., Polliack A., Vánky F. Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer. 1976 Oct 15;18(4):421–431. doi: 10.1002/ijc.2910180405. [DOI] [PubMed] [Google Scholar]
  37. Kuge S., Miura Y., Nakamura Y., Mitomi T., Habu S., Nishimura T. Superantigen-induced human CD4+ helper/killer T cell phenomenon. Selective induction of Th1 helper/killer T cells and application to tumor immunotherapy. J Immunol. 1995 Feb 15;154(4):1777–1785. [PubMed] [Google Scholar]
  38. Labrecque N., Thibodeau J., Sékaly R. P. Interactions between staphylococcal superantigens and MHC class II molecules. Semin Immunol. 1993 Feb;5(1):23–32. doi: 10.1006/smim.1993.1004. [DOI] [PubMed] [Google Scholar]
  39. Lai W. C., Bennett M., Pakes S. P., Kumar V., Steutermann D., Owusu I., Mikhael A. Resistance to Mycoplasma pulmonis mediated by activated natural killer cells. J Infect Dis. 1990 Jun;161(6):1269–1275. doi: 10.1093/infdis/161.6.1269. [DOI] [PubMed] [Google Scholar]
  40. Matthes M., Schrezenmeier H., Homfeld J., Fleischer S., Malissen B., Kirchner H., Fleischer B. Clonal analysis of human T cell activation by the Mycoplasma arthritidis mitogen (MAS). Eur J Immunol. 1988 Nov;18(11):1733–1737. doi: 10.1002/eji.1830181112. [DOI] [PubMed] [Google Scholar]
  41. Melder R. J., Walker E., Herberman R. B., Whiteside T. L. Adhesion characteristics of human interleukin 2-activated natural killer cells. Cell Immunol. 1991 Jan;132(1):177–192. doi: 10.1016/0008-8749(91)90017-6. [DOI] [PubMed] [Google Scholar]
  42. Ng A. K., Indiveri F., Pellegrino M. A., Molinaro G. A., Quaranta V., Ferrone S. Natural cytotoxicity and antibody-dependent cellular cytotoxicity of human lymphocytes depleted of HLA-DR bearing cells with monoclonal HLA-DR antibodies. J Immunol. 1980 May;124(5):2336–2340. [PubMed] [Google Scholar]
  43. Parsonnet J., Gillis Z. A. Production of tumor necrosis factor by human monocytes in response to toxic-shock-syndrome toxin-1. J Infect Dis. 1988 Nov;158(5):1026–1033. doi: 10.1093/infdis/158.5.1026. [DOI] [PubMed] [Google Scholar]
  44. Parsonnet J., Hickman R. K., Eardley D. D., Pier G. B. Induction of human interleukin-1 by toxic-shock-syndrome toxin-1. J Infect Dis. 1985 Mar;151(3):514–522. doi: 10.1093/infdis/151.3.514. [DOI] [PubMed] [Google Scholar]
  45. Pirelli A., Allavena P., Mantovani A. Activated adherent large granular lymphocytes/natural killer (LGL/NK) cells change their migratory behaviour. Immunology. 1988 Dec;65(4):651–653. [PMC free article] [PubMed] [Google Scholar]
  46. Pockaj B. A., Topalian S. L., Steinberg S. M., White D. E., Rosenberg S. A. Infectious complications associated with interleukin-2 administration: a retrospective review of 935 treatment courses. J Clin Oncol. 1993 Jan;11(1):136–147. doi: 10.1200/JCO.1993.11.1.136. [DOI] [PubMed] [Google Scholar]
  47. Pross H. F., Baines M. G., Rubin P., Shragge P., Patterson M. S. Spontaneous human lymphocyte-mediated cytotoxicity against tumor target cells. IX. The quantitation of natural killer cell activity. J Clin Immunol. 1981 Jan;1(1):51–63. doi: 10.1007/BF00915477. [DOI] [PubMed] [Google Scholar]
  48. Pross H. F., Lotzová E. Role of natural killer cells in cancer. Nat Immun. 1993 Jul-Oct;12(4-5):279–292. [PubMed] [Google Scholar]
  49. Rink L., Kruse A., Nicklas W., Hoyer J., Kirchner H. Induction of cytokines in human peripheral blood and spleen cells by the Mycoplasma arthritidis-derived superantigen. Lymphokine Cytokine Res. 1992 Apr;11(2):105–108. [PubMed] [Google Scholar]
  50. Romagnani S. Induction of TH1 and TH2 responses: a key role for the 'natural' immune response? Immunol Today. 1992 Oct;13(10):379–381. doi: 10.1016/0167-5699(92)90083-J. [DOI] [PubMed] [Google Scholar]
  51. Roncarolo M. G., Bigler M., Haanen J. B., Yssel H., Bacchetta R., de Vries J. E., Spits H. Natural killer cell clones can efficiently process and present protein antigens. J Immunol. 1991 Aug 1;147(3):781–787. [PubMed] [Google Scholar]
  52. Rosenberg S. A. Immunotherapy and gene therapy of cancer. Cancer Res. 1991 Sep 15;51(18 Suppl):5074s–5079s. [PubMed] [Google Scholar]
  53. Shu S., Krinock R. A., Matsumura T., Sussman J. J., Fox B. A., Chang A. E., Terman D. S. Stimulation of tumor-draining lymph node cells with superantigenic staphylococcal toxins leads to the generation of tumor-specific effector T cells. J Immunol. 1994 Feb 1;152(3):1277–1288. [PubMed] [Google Scholar]
  54. Spertini F., Spits H., Geha R. S. Staphylococcal exotoxins deliver activation signals to human T-cell clones via major histocompatibility complex class II molecules. Proc Natl Acad Sci U S A. 1991 Sep 1;88(17):7533–7537. doi: 10.1073/pnas.88.17.7533. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Subauste C. S., Dawson L., Remington J. S. Human lymphokine-activated killer cells are cytotoxic against cells infected with Toxoplasma gondii. J Exp Med. 1992 Dec 1;176(6):1511–1519. doi: 10.1084/jem.176.6.1511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Swaminathan S., Furey W., Pletcher J., Sax M. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature. 1992 Oct 29;359(6398):801–806. doi: 10.1038/359801a0. [DOI] [PubMed] [Google Scholar]
  57. Trede N. S., Castigli E., Geha R. S., Chatila T. Microbial superantigens induce NF-kappa B in the human monocytic cell line THP-1. J Immunol. 1993 Jun 15;150(12):5604–5613. [PubMed] [Google Scholar]
  58. Trede N. S., Geha R. S., Chatila T. Transcriptional activation of IL-1 beta and tumor necrosis factor-alpha genes by MHC class II ligands. J Immunol. 1991 Apr 1;146(7):2310–2315. [PubMed] [Google Scholar]
  59. Trede N. S., Morio T., Scholl P. R., Geha R. S., Chatila T. Early activation events induced by the staphylococcal superantigen toxic shock syndrome toxin-1 in human peripheral blood monocytes. Clin Immunol Immunopathol. 1994 Feb;70(2):137–144. doi: 10.1006/clin.1994.1021. [DOI] [PubMed] [Google Scholar]
  60. Tumang J. R., Cherniack E. P., Gietl D. M., Cole B. C., Russo C., Crow M. K., Friedman S. M. T helper cell-dependent, microbial superantigen-induced murine B cell activation: polyclonal and antigen-specific antibody responses. J Immunol. 1991 Jul 15;147(2):432–438. [PubMed] [Google Scholar]
  61. Weber J. S., Yang J. C., Topalian S. L., Schwartzentruber D. J., White D. E., Rosenberg S. A. The use of interleukin-2 and lymphokine-activated killer cells for the treatment of patients with non-Hodgkin's lymphoma. J Clin Oncol. 1992 Jan;10(1):33–40. doi: 10.1200/JCO.1992.10.1.33. [DOI] [PubMed] [Google Scholar]
  62. Whittington R., Faulds D. Interleukin-2. A review of its pharmacological properties and therapeutic use in patients with cancer. Drugs. 1993 Sep;46(3):446–514. doi: 10.2165/00003495-199346030-00009. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES