Skip to main content
Journal of Neurology, Neurosurgery, and Psychiatry logoLink to Journal of Neurology, Neurosurgery, and Psychiatry
. 2003 Jul;74(7):844–851. doi: 10.1136/jnnp.74.7.844

Long term treatment and disease severity change brain responses to levodopa in Parkinson's disease

T Hershey 1, K Black 1, J Carl 1, L McGee-Minnich 1, A Snyder 1, J Perlmutter 1
PMCID: PMC1738560  PMID: 12810765

Abstract

Objectives: Degeneration of nigrostriatal neurons and subsequent striatal dopamine deficiency produce many of the symptoms of Parkinson disease (PD). Initially restoration of striatal dopamine with oral levodopa provides substantial benefit, but with long term treatment and disease progression, levodopa can elicit additional clinical symptoms, reflecting altered effects of levodopa in the brain. The authors examined whether long term treatment affects the brain's response to levodopa in the absence of these altered clinical responses to levodopa.

Methods: Positron emission tomography (PET) measurements were used of brain-blood flow before and after an acute dose of levodopa in three groups: PD patients treated long term with levodopa without levodopa induced dyskinesias, levodopa naive PD patients, and controls.

Results: It was found that the PD group treated long term responded to acute levodopa differently from controls in left sensorimotor and left ventrolateral prefrontal cortex. In both regions, the treated PD group had decreased blood flow whereas the control group had increased blood flow in response to levodopa. Levodopa naive PD patients had little or no response to levodopa in these regions. Within the treated PD group, severity of parkinsonism correlated with the degree of abnormality of the sensorimotor cortex response, but not with the prefrontal response.

Conclusions: It is concluded that long term levodopa treatment and disease severity affect the physiology of dopaminergic pathways, producing altered responses to levodopa in brain regions associated with motor function.

Full Text

The Full Text of this article is available as a PDF (275.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alexander G. E., Crutcher M. D., DeLong M. R. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, "prefrontal" and "limbic" functions. Prog Brain Res. 1990;85:119–146. [PubMed] [Google Scholar]
  2. Andersson J. L., Sundin A., Valind S. A method for coregistration of PET and MR brain images. J Nucl Med. 1995 Jul;36(7):1307–1315. [PubMed] [Google Scholar]
  3. Azuma H., Miyazawa T., Mizokawa T., Magota A., Hara K. [Stimulatory effects of lisuride on local cerebral blood flow and local cerebral glucose utilization in rats]. Nihon Yakurigaku Zasshi. 1988 Jun;91(6):341–349. doi: 10.1254/fpj.91.341. [DOI] [PubMed] [Google Scholar]
  4. Ballard P. A., Tetrud J. W., Langston J. W. Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology. 1985 Jul;35(7):949–956. doi: 10.1212/wnl.35.7.949. [DOI] [PubMed] [Google Scholar]
  5. Black K. J., Snyder A. Z., Koller J. M., Gado M. H., Perlmutter J. S. Template images for nonhuman primate neuroimaging: 1. Baboon. Neuroimage. 2001 Sep;14(3):736–743. doi: 10.1006/nimg.2001.0752. [DOI] [PubMed] [Google Scholar]
  6. Black Kevin J., Hershey Tamara, Koller Jonathan M., Videen Tom O., Mintun Mark A., Price Joseph L., Perlmutter Joel S. A possible substrate for dopamine-related changes in mood and behavior: prefrontal and limbic effects of a D3-preferring dopamine agonist. Proc Natl Acad Sci U S A. 2002 Dec 13;99(26):17113–17118. doi: 10.1073/pnas.012260599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Boraud T., Bezard E., Bioulac B., Gross C. E. Dopamine agonist-induced dyskinesias are correlated to both firing pattern and frequency alterations of pallidal neurones in the MPTP-treated monkey. Brain. 2001 Mar;124(Pt 3):546–557. doi: 10.1093/brain/124.3.546. [DOI] [PubMed] [Google Scholar]
  8. Boyce S., Rupniak N. M., Steventon M. J., Iversen S. D. Nigrostriatal damage is required for induction of dyskinesias by L-DOPA in squirrel monkeys. Clin Neuropharmacol. 1990 Oct;13(5):448–458. doi: 10.1097/00002826-199010000-00006. [DOI] [PubMed] [Google Scholar]
  9. Carey R. J. Motoric sensitization and levodopa accumulation after chronic levodopa treatment in an animal model of Parkinson's disease. J Geriatr Psychiatry Neurol. 1993 Jul-Sep;6(3):152–160. doi: 10.1177/089198879300600304. [DOI] [PubMed] [Google Scholar]
  10. Colosimo C., De Michele M. Motor fluctuations in Parkinson's disease: pathophysiology and treatment. Eur J Neurol. 1999 Jan;6(1):1–21. doi: 10.1046/j.1468-1331.1999.610001.x. [DOI] [PubMed] [Google Scholar]
  11. Cotzias G. C., Van Woert M. H., Schiffer L. M. Aromatic amino acids and modification of parkinsonism. N Engl J Med. 1967 Feb 16;276(7):374–379. doi: 10.1056/NEJM196702162760703. [DOI] [PubMed] [Google Scholar]
  12. Engber T. M., Susel Z., Kuo S., Chase T. N. Chronic levodopa treatment alters basal and dopamine agonist-stimulated cerebral glucose utilization. J Neurosci. 1990 Dec;10(12):3889–3895. doi: 10.1523/JNEUROSCI.10-12-03889.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Factor S. A., Molho E. S., Podskalny G. D., Brown D. Parkinson's disease: drug-induced psychiatric states. Adv Neurol. 1995;65:115–138. [PubMed] [Google Scholar]
  14. Folstein M. F., Folstein S. E., McHugh P. R. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975 Nov;12(3):189–198. doi: 10.1016/0022-3956(75)90026-6. [DOI] [PubMed] [Google Scholar]
  15. Fox P. T., Mintun M. A., Raichle M. E., Herscovitch P. A noninvasive approach to quantitative functional brain mapping with H2 (15)O and positron emission tomography. J Cereb Blood Flow Metab. 1984 Sep;4(3):329–333. doi: 10.1038/jcbfm.1984.49. [DOI] [PubMed] [Google Scholar]
  16. Friston K. J., Holmes A. P., Worsley K. J. How many subjects constitute a study? Neuroimage. 1999 Jul;10(1):1–5. doi: 10.1006/nimg.1999.0439. [DOI] [PubMed] [Google Scholar]
  17. Gerfen C. R. Molecular effects of dopamine on striatal-projection pathways. Trends Neurosci. 2000 Oct;23(10 Suppl):S64–S70. doi: 10.1016/s1471-1931(00)00019-7. [DOI] [PubMed] [Google Scholar]
  18. Gold Lorenz, Lauritzen Martin. Neuronal deactivation explains decreased cerebellar blood flow in response to focal cerebral ischemia or suppressed neocortical function. Proc Natl Acad Sci U S A. 2002 May 28;99(11):7699–7704. doi: 10.1073/pnas.112012499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Grasby P. M., Friston K. J., Bench C. J., Cowen P. J., Frith C. D., Liddle P. F., Frackowiak R. S., Dolan R. J. The effect of the dopamine agonist, apomorphine, on regional cerebral blood flow in normal volunteers. Psychol Med. 1993 Aug;23(3):605–612. doi: 10.1017/s0033291700025381. [DOI] [PubMed] [Google Scholar]
  20. HAMILTON M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960 Feb;23:56–62. doi: 10.1136/jnnp.23.1.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Henriksen L., Boas J. Regional cerebral blood flow in hemiparkinsonian patients. Emission computerized tomography of inhaled 133Xenon before and after levodopa. Acta Neurol Scand. 1985 Apr;71(4):257–266. doi: 10.1111/j.1600-0404.1985.tb03198.x. [DOI] [PubMed] [Google Scholar]
  22. Herscovitch P., Markham J., Raichle M. E. Brain blood flow measured with intravenous H2(15)O. I. Theory and error analysis. J Nucl Med. 1983 Sep;24(9):782–789. [PubMed] [Google Scholar]
  23. Hershey T., Black K. J., Carl J. L., Perlmutter J. S. Dopa-induced blood flow responses in nonhuman primates. Exp Neurol. 2000 Dec;166(2):342–349. doi: 10.1006/exnr.2000.7522. [DOI] [PubMed] [Google Scholar]
  24. Hershey T., Black K. J., Stambuk M. K., Carl J. L., McGee-Minnich L. A., Perlmutter J. S. Altered thalamic response to levodopa in Parkinson's patients with dopa-induced dyskinesias. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):12016–12021. doi: 10.1073/pnas.95.20.12016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kapur S., Meyer J., Wilson A. A., Houle S., Brown G. M. Activation of specific cortical regions by apomorphine: an [15O]H2O PET study in humans. Neurosci Lett. 1994 Jul 18;176(1):21–24. doi: 10.1016/0304-3940(94)90861-3. [DOI] [PubMed] [Google Scholar]
  26. Kobari M., Fukuuchi Y., Shinohara T., Obara K., Nogawa S. Levodopa-induced local cerebral blood flow changes in Parkinson's disease and related disorders. J Neurol Sci. 1995 Feb;128(2):212–218. doi: 10.1016/0022-510x(94)00237-i. [DOI] [PubMed] [Google Scholar]
  27. Krimer L. S., Jakab R. L., Goldman-Rakic P. S. Quantitative three-dimensional analysis of the catecholaminergic innervation of identified neurons in the macaque prefrontal cortex. J Neurosci. 1997 Oct 1;17(19):7450–7461. doi: 10.1523/JNEUROSCI.17-19-07450.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lauritzen M. Relationship of spikes, synaptic activity, and local changes of cerebral blood flow. J Cereb Blood Flow Metab. 2001 Dec;21(12):1367–1383. doi: 10.1097/00004647-200112000-00001. [DOI] [PubMed] [Google Scholar]
  29. Leenders K. L., Wolfson L., Gibbs J. M., Wise R. J., Causon R., Jones T., Legg N. J. The effects of L-DOPA on regional cerebral blood flow and oxygen metabolism in patients with Parkinson's disease. Brain. 1985 Mar;108(Pt 1):171–191. doi: 10.1093/brain/108.1.171. [DOI] [PubMed] [Google Scholar]
  30. Mattay Venkata S., Tessitore Alessandro, Callicott Joseph H., Bertolino Alessandro, Goldberg Terry E., Chase Thomas N., Hyde Thomas M., Weinberger Daniel R. Dopaminergic modulation of cortical function in patients with Parkinson's disease. Ann Neurol. 2002 Feb;51(2):156–164. doi: 10.1002/ana.10078. [DOI] [PubMed] [Google Scholar]
  31. Melamed E., Lavy S., Cooper G., Bentin S. Regional cerebral blood flow in parkinsonism. Measurement before and after levodopa. J Neurol Sci. 1978 Oct;38(3):391–397. doi: 10.1016/0022-510x(78)90144-2. [DOI] [PubMed] [Google Scholar]
  32. Middleton F. A., Strick P. L. Anatomical evidence for cerebellar and basal ganglia involvement in higher cognitive function. Science. 1994 Oct 21;266(5184):458–461. doi: 10.1126/science.7939688. [DOI] [PubMed] [Google Scholar]
  33. Mink J. W. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol. 1996 Nov;50(4):381–425. doi: 10.1016/s0301-0082(96)00042-1. [DOI] [PubMed] [Google Scholar]
  34. Mones R. J., Elizan T. S., Siegel G. J. Analysis of L-dopa induced dyskinesias in 51 patients with Parkinsonism. J Neurol Neurosurg Psychiatry. 1971 Dec;34(6):668–673. doi: 10.1136/jnnp.34.6.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Montastruc J. L., Celsis P., Agniel A., Demonet J. F., Doyon B., Puel M., Marc-Vergnes J. P., Rascol A. Levodopa-induced regional cerebral blood flow changes in normal volunteers and patients with Parkinson's disease. Lack of correlation with clinical or neuropsychological improvements. Mov Disord. 1987;2(4):279–289. doi: 10.1002/mds.870020405. [DOI] [PubMed] [Google Scholar]
  36. Oishi M., Mochizuki Y., Hara M., Du C. M., Takasu T. Effects of intravenous L-dopa on P300 and regional cerebral blood flow in parkinsonism. Int J Neurosci. 1996 Mar;85(1-2):147–154. doi: 10.3109/00207459608986359. [DOI] [PubMed] [Google Scholar]
  37. Ojemann J. G., Buckner R. L., Akbudak E., Snyder A. Z., Ollinger J. M., McKinstry R. C., Rosen B. R., Petersen S. E., Raichle M. E., Conturo T. E. Functional MRI studies of word-stem completion: reliability across laboratories and comparison to blood flow imaging with PET. Hum Brain Mapp. 1998;6(4):203–215. doi: 10.1002/(SICI)1097-0193(1998)6:4<203::AID-HBM2>3.0.CO;2-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Perlmutter J. S., Raichle M. E. Regional blood flow in hemiparkinsonism. Neurology. 1985 Aug;35(8):1127–1134. doi: 10.1212/wnl.35.8.1127. [DOI] [PubMed] [Google Scholar]
  39. Sawaguchi T., Goldman-Rakic P. S. The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol. 1994 Feb;71(2):515–528. doi: 10.1152/jn.1994.71.2.515. [DOI] [PubMed] [Google Scholar]
  40. Schwartz W. J., Smith C. B., Davidsen L., Savaki H., Sokoloff L., Mata M., Fink D. J., Gainer H. Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science. 1979 Aug 17;205(4407):723–725. doi: 10.1126/science.462184. [DOI] [PubMed] [Google Scholar]
  41. Spinks T. J., Jones T., Bailey D. L., Townsend D. W., Grootoonk S., Bloomfield P. M., Gilardi M. C., Casey M. E., Sipe B., Reed J. Physical performance of a positron tomograph for brain imaging with retractable septa. Phys Med Biol. 1992 Aug;37(8):1637–1655. doi: 10.1088/0031-9155/37/8/002. [DOI] [PubMed] [Google Scholar]
  42. Trugman J. M., Wooten G. F. The effects of L-DOPA on regional cerebral glucose utilization in rats with unilateral lesions of the substantia nigra. Brain Res. 1986 Aug 6;379(2):264–274. doi: 10.1016/0006-8993(86)90780-8. [DOI] [PubMed] [Google Scholar]
  43. Videen T. O., Perlmutter J. S., Herscovitch P., Raichle M. E. Brain blood volume, flow, and oxygen utilization measured with 15O radiotracers and positron emission tomography: revised metabolic computations. J Cereb Blood Flow Metab. 1987 Aug;7(4):513–516. doi: 10.1038/jcbfm.1987.97. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Neurology, Neurosurgery, and Psychiatry are provided here courtesy of BMJ Publishing Group

RESOURCES