Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Apr;64(4):1173–1180. doi: 10.1128/iai.64.4.1173-1180.1996

Differentiation-associated toxin receptor modulation, cytokine production, and sensitivity to Shiga-like toxins in human monocytes and monocytic cell lines.

B Ramegowda 1, V L Tesh 1
PMCID: PMC173900  PMID: 8606075

Abstract

Infections with Shiga toxin-producing Shigella dysenteriae type 1 or Shiga-like toxin (SLT)-producing Escherichia coli cause bloody diarrhea and are associated with an increased risk of acute renal failure and severe neurological complications. Histopathological examination of human and animal tissues suggests that the target cells for toxin action are vascular endothelial cells. Proinflammatory cytokines regulate endothelial cell membrane expression of the glycolipid globotriaosylceramide (Gb(3)) which serves as the toxin receptor, suggesting that the host response to the toxins or other bacterial products may contribute to pathogenesis by regulating target cell sensitivity to the toxins. We examined the effects of purified SLTs on human peripheral blood monocytes (PBMn) and two monocytic cell lines. Undifferentiated THP-1 cells were sensitive to SLTs. Treatment of the cells with a number of differentiation factors resulted in increased toxin resistance which was associated with decreased toxin receptor expression. U-937 cells, irrespective of maturation state, and PBMn were resistant to the toxins. U-937 cells expressed low levels of GB(3), and toxin receptor expression was not altered during differentiation. Treatment of monocytic cells with tumor necrosis factor alpha (TNF-alpha) did not markedly increase sensitivity or alter toxin receptor expression. Undifferentiated monocytic cells failed to synthesize TNF and interleukin 1beta when treated with sublethal concentrations of SLT type I (SLT-I), whereas cells treated with 12-0-tetradecanoylphorbol-13-acetate acquired the ability to produce cytokines when stimulated with SLT-I. When stimulated with SLT-I, U-937 cells produced lower levels of TNF than PBMn and THP-1 cells did.

Full Text

The Full Text of this article is available as a PDF (312.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auwerx J. The human leukemia cell line, THP-1: a multifacetted model for the study of monocyte-macrophage differentiation. Experientia. 1991 Jan 15;47(1):22–31. doi: 10.1007/BF02041244. [DOI] [PubMed] [Google Scholar]
  2. Barrett T. J., Potter M. E., Strockbine N. A. Evidence for participation of the macrophage in Shiga-like toxin II-induced lethality in mice. Microb Pathog. 1990 Aug;9(2):95–103. doi: 10.1016/0882-4010(90)90083-3. [DOI] [PubMed] [Google Scholar]
  3. Barrett T. J., Potter M. E., Wachsmuth I. K. Bacterial endotoxin both enhances and inhibits the toxicity of Shiga-like toxin II in rabbits and mice. Infect Immun. 1989 Nov;57(11):3434–3437. doi: 10.1128/iai.57.11.3434-3437.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cohen A., Madrid-Marina V., Estrov Z., Freedman M. H., Lingwood C. A., Dosch H. M. Expression of glycolipid receptors to Shiga-like toxin on human B lymphocytes: a mechanism for the failure of long-lived antibody response to dysenteric disease. Int Immunol. 1990;2(1):1–8. doi: 10.1093/intimm/2.1.1. [DOI] [PubMed] [Google Scholar]
  5. Eiklid K., Olsnes S. Interaction of Shigella shigae cytotoxin with receptors on sensitive and insensitive cells. J Recept Res. 1980;1(2):199–213. doi: 10.3109/10799898009044098. [DOI] [PubMed] [Google Scholar]
  6. Fenton M. J., Vermeulen M. W., Clark B. D., Webb A. C., Auron P. E. Human pro-IL-1 beta gene expression in monocytic cells is regulated by two distinct pathways. J Immunol. 1988 Apr 1;140(7):2267–2273. [PubMed] [Google Scholar]
  7. Harris P., Ralph P. Human leukemic models of myelomonocytic development: a review of the HL-60 and U937 cell lines. J Leukoc Biol. 1985 Apr;37(4):407–422. doi: 10.1002/jlb.37.4.407. [DOI] [PubMed] [Google Scholar]
  8. Jacewicz M. S., Acheson D. W., Mobassaleh M., Donohue-Rolfe A., Balasubramanian K. A., Keusch G. T. Maturational regulation of globotriaosylceramide, the Shiga-like toxin 1 receptor, in cultured human gut epithelial cells. J Clin Invest. 1995 Sep;96(3):1328–1335. doi: 10.1172/JCI118168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Jacewicz M. S., Mobassaleh M., Gross S. K., Balasubramanian K. A., Daniel P. F., Raghavan S., McCluer R. H., Keusch G. T. Pathogenesis of Shigella diarrhea: XVII. A mammalian cell membrane glycolipid, Gb3, is required but not sufficient to confer sensitivity to Shiga toxin. J Infect Dis. 1994 Mar;169(3):538–546. doi: 10.1093/infdis/169.3.538. [DOI] [PubMed] [Google Scholar]
  10. Jacewicz M., Feldman H. A., Donohue-Rolfe A., Balasubramanian K. A., Keusch G. T. Pathogenesis of Shigella diarrhea. XIV. Analysis of Shiga toxin receptors on cloned HeLa cells. J Infect Dis. 1989 May;159(5):881–889. doi: 10.1093/infdis/159.5.881. [DOI] [PubMed] [Google Scholar]
  11. Kiarash A., Boyd B., Lingwood C. A. Glycosphingolipid receptor function is modified by fatty acid content. Verotoxin 1 and verotoxin 2c preferentially recognize different globotriaosyl ceramide fatty acid homologues. J Biol Chem. 1994 Apr 15;269(15):11138–11146. [PubMed] [Google Scholar]
  12. Kniep B., Monner D. A., Schwuléra U., Mühlradt P. F. Glycosphingolipids of the globo-series are associated with the monocytic lineage of human myeloid cells. Eur J Biochem. 1985 May 15;149(1):187–191. doi: 10.1111/j.1432-1033.1985.tb08910.x. [DOI] [PubMed] [Google Scholar]
  13. Koeffler H. P. Induction of differentiation of human acute myelogenous leukemia cells: therapeutic implications. Blood. 1983 Oct;62(4):709–721. [PubMed] [Google Scholar]
  14. Louise C. B., Kaye S. A., Boyd B., Lingwood C. A., Obrig T. G. Shiga toxin-associated hemolytic uremic syndrome: effect of sodium butyrate on sensitivity of human umbilical vein endothelial cells to Shiga toxin. Infect Immun. 1995 Jul;63(7):2766–2769. doi: 10.1128/iai.63.7.2766-2769.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Louise C. B., Obrig T. G. Shiga toxin-associated hemolytic-uremic syndrome: combined cytotoxic effects of Shiga toxin, interleukin-1 beta, and tumor necrosis factor alpha on human vascular endothelial cells in vitro. Infect Immun. 1991 Nov;59(11):4173–4179. doi: 10.1128/iai.59.11.4173-4179.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Minta J. O., Pambrun L. In vitro induction of cytologic and functional differentiation of the immature human monocytelike cell line U-937 with phorbol myristate acetate. Am J Pathol. 1985 Apr;119(1):111–126. [PMC free article] [PubMed] [Google Scholar]
  17. O'Brien A. D., Tesh V. L., Donohue-Rolfe A., Jackson M. P., Olsnes S., Sandvig K., Lindberg A. A., Keusch G. T. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr Top Microbiol Immunol. 1992;180:65–94. doi: 10.1007/978-3-642-77238-2_4. [DOI] [PubMed] [Google Scholar]
  18. Obrig T. G., Del Vecchio P. J., Brown J. E., Moran T. P., Rowland B. M., Judge T. K., Rothman S. W. Direct cytotoxic action of Shiga toxin on human vascular endothelial cells. Infect Immun. 1988 Sep;56(9):2373–2378. doi: 10.1128/iai.56.9.2373-2378.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Obrig T. G., Louise C. B., Lingwood C. A., Boyd B., Barley-Maloney L., Daniel T. O. Endothelial heterogeneity in Shiga toxin receptors and responses. J Biol Chem. 1993 Jul 25;268(21):15484–15488. [PubMed] [Google Scholar]
  20. Raqib R., Lindberg A. A., Wretlind B., Bardhan P. K., Andersson U., Andersson J. Persistence of local cytokine production in shigellosis in acute and convalescent stages. Infect Immun. 1995 Jan;63(1):289–296. doi: 10.1128/iai.63.1.289-296.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Richardson S. E., Karmali M. A., Becker L. E., Smith C. R. The histopathology of the hemolytic uremic syndrome associated with verocytotoxin-producing Escherichia coli infections. Hum Pathol. 1988 Sep;19(9):1102–1108. doi: 10.1016/s0046-8177(88)80093-5. [DOI] [PubMed] [Google Scholar]
  22. Sandvig K., Ryd M., Garred O., Schweda E., Holm P. K., van Deurs B. Retrograde transport from the Golgi complex to the ER of both Shiga toxin and the nontoxic Shiga B-fragment is regulated by butyric acid and cAMP. J Cell Biol. 1994 Jul;126(1):53–64. doi: 10.1083/jcb.126.1.53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Springer T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell. 1994 Jan 28;76(2):301–314. doi: 10.1016/0092-8674(94)90337-9. [DOI] [PubMed] [Google Scholar]
  24. Strockbine N. A., Marques L. R., Holmes R. K., O'Brien A. D. Characterization of monoclonal antibodies against Shiga-like toxin from Escherichia coli. Infect Immun. 1985 Dec;50(3):695–700. doi: 10.1128/iai.50.3.695-700.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Strockbine N. A., Marques L. R., Newland J. W., Smith H. W., Holmes R. K., O'Brien A. D. Two toxin-converting phages from Escherichia coli O157:H7 strain 933 encode antigenically distinct toxins with similar biologic activities. Infect Immun. 1986 Jul;53(1):135–140. doi: 10.1128/iai.53.1.135-140.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sundström C., Nilsson K. Establishment and characterization of a human histiocytic lymphoma cell line (U-937). Int J Cancer. 1976 May 15;17(5):565–577. doi: 10.1002/ijc.2910170504. [DOI] [PubMed] [Google Scholar]
  27. Tesh V. L., Ramegowda B., Samuel J. E. Purified Shiga-like toxins induce expression of proinflammatory cytokines from murine peritoneal macrophages. Infect Immun. 1994 Nov;62(11):5085–5094. doi: 10.1128/iai.62.11.5085-5094.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Tesh V. L., Samuel J. E., Perera L. P., Sharefkin J. B., O'Brien A. D. Evaluation of the role of Shiga and Shiga-like toxins in mediating direct damage to human vascular endothelial cells. J Infect Dis. 1991 Aug;164(2):344–352. doi: 10.1093/infdis/164.2.344. [DOI] [PubMed] [Google Scholar]
  29. Tsuchiya S., Kobayashi Y., Goto Y., Okumura H., Nakae S., Konno T., Tada K. Induction of maturation in cultured human monocytic leukemia cells by a phorbol diester. Cancer Res. 1982 Apr;42(4):1530–1536. [PubMed] [Google Scholar]
  30. Tsuchiya S., Yamabe M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer. 1980 Aug;26(2):171–176. doi: 10.1002/ijc.2910260208. [DOI] [PubMed] [Google Scholar]
  31. Unanue E. R., Allen P. M. The basis for the immunoregulatory role of macrophages and other accessory cells. Science. 1987 May 1;236(4801):551–557. doi: 10.1126/science.2437650. [DOI] [PubMed] [Google Scholar]
  32. Waddell T., Cohen A., Lingwood C. A. Induction of verotoxin sensitivity in receptor-deficient cell lines using the receptor glycolipid globotriosylceramide. Proc Natl Acad Sci U S A. 1990 Oct;87(20):7898–7901. doi: 10.1073/pnas.87.20.7898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Ways K., Riddle R., Ways M., Cook P. Effect of phorbol esters on cytosolic protein kinase C content and activity in the human monoblastoid U937 cell. J Biol Chem. 1991 Jan 15;266(2):1258–1264. [PubMed] [Google Scholar]
  34. van de Kar N. C., Monnens L. A., Karmali M. A., van Hinsbergh V. W. Tumor necrosis factor and interleukin-1 induce expression of the verocytotoxin receptor globotriaosylceramide on human endothelial cells: implications for the pathogenesis of the hemolytic uremic syndrome. Blood. 1992 Dec 1;80(11):2755–2764. [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES