Skip to main content
Occupational and Environmental Medicine logoLink to Occupational and Environmental Medicine
. 2003 Aug;60(8):599–603. doi: 10.1136/oem.60.8.599

Exposure assessment of monoterpenes and styrene: a comparison of air sampling and biomonitoring

I Liljelind 1, S Rappaport 1, K Eriksson 1, J Andersson 1, I Bergdahl 1, A Sunesson 1, B Jarvholm 1
PMCID: PMC1740601  PMID: 12883022

Abstract

Background: Within- and between-worker variance components have seldom been reported for both environmental and biological data collected from the same persons.

Aims: To estimate these variance components and their ratio for air contaminants and urinary metabolites in two different work environments and to predict the attenuation of exposure-response relationships based on these measures.

Methods: Parallel measurements of air and urine were performed among workers exposed to monoterpenes in sawmills (urinary metabolite: verbenol) and styrene in reinforced plastics factories (urinary metabolite: mandelic acid).

Results: Among the sawmill workers, variance components of the air and urinary verbenol results were similar; for the reinforced plastics workers the estimated between-worker variance component was greater for styrene in air than mandelic acid in urine. This suggests that attenuation bias would be about equal if air or biological monitoring were employed for monoterpene exposures, but would be greater if urinary mandelic acid were used instead of airborne styrene in an investigation of styrene exposure.

Conclusions: Personal air samplers provide data with similar or superior quality to urinary metabolites as measures of exposure to these monoterpenes in sawmills and styrene in reinforced plastics factories.

Full Text

The Full Text of this article is available as a PDF (174.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apostoli P., Alessandro G., Placidi D., Alessio L. Metabolic interferences in subjects occupationally exposed to binary styrene-acetone mixtures. Int Arch Occup Environ Health. 1998 Oct;71(7):445–452. doi: 10.1007/s004200050304. [DOI] [PubMed] [Google Scholar]
  2. Butler A. R. The Jaffé reaction. Identification of the coloured species. Clin Chim Acta. 1975 Mar 10;59(2):227–232. doi: 10.1016/0009-8981(75)90033-9. [DOI] [PubMed] [Google Scholar]
  3. Cochran W. G. The effectiveness of adjustment by subclassification in removing bias in observational studies. Biometrics. 1968 Jun;24(2):295–313. [PubMed] [Google Scholar]
  4. Egeghy P. P., Tornero-Velez R., Rappaport S. M. Environmental and biological monitoring of benzene during self-service automobile refueling. Environ Health Perspect. 2000 Dec;108(12):1195–1202. doi: 10.1289/ehp.001081195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Egeghy Peter P., Nylander-French Leena, Gwin Kristin K., Hertz-Picciotto Irva, Rappaport Stephen M. Self-collected breath sampling for monitoring low-level benzene exposures among automobile mechanics. Ann Occup Hyg. 2002 Jul;46(5):489–500. [PubMed] [Google Scholar]
  6. Eriksson K., Levin J. O. Identification of cis- and trans-verbenol in human urine after occupational exposure to terpenes. Int Arch Occup Environ Health. 1990;62(5):379–383. doi: 10.1007/BF00381368. [DOI] [PubMed] [Google Scholar]
  7. Heederik D., Attfield M. Characterization of dust exposure for the study of chronic occupational lung disease: a comparison of different exposure assessment strategies. Am J Epidemiol. 2000 May 15;151(10):982–990. doi: 10.1093/oxfordjournals.aje.a010142. [DOI] [PubMed] [Google Scholar]
  8. Hoet P., Haufroid V. Biological monitoring: state of the art. Occup Environ Med. 1997 Jun;54(6):361–366. doi: 10.1136/oem.54.6.361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Johanson G., Ernstgård L., Gullstrand E., Löf A., Osterman-Golkar S., Williams C. C., Sumner S. C. Styrene oxide in blood, hemoglobin adducts, and urinary metabolites in human volunteers exposed to (13)C(8)-styrene vapors. Toxicol Appl Pharmacol. 2000 Oct 1;168(1):36–49. doi: 10.1006/taap.2000.9007. [DOI] [PubMed] [Google Scholar]
  10. Kromhout H., Symanski E., Rappaport S. M. A comprehensive evaluation of within- and between-worker components of occupational exposure to chemical agents. Ann Occup Hyg. 1993 Jun;37(3):253–270. doi: 10.1093/annhyg/37.3.253. [DOI] [PubMed] [Google Scholar]
  11. Liljelind I. E., Rappaport S. M., Levin J. O., Strömback A. E., Sunesson A. L., Järvholm B. G. Comparison of self-assessment and expert assessment of occupational exposure to chemicals. Scand J Work Environ Health. 2001 Oct;27(5):311–317. doi: 10.5271/sjweh.619. [DOI] [PubMed] [Google Scholar]
  12. Liljelind I. E., Strömbäck A. E., Järvholm B. G., Levin J. O., Strangert B. L., Sunesson A. L. Self-assessment of exposure--a pilot study of assessment of exposure to benzene in tank truck drivers. Appl Occup Environ Hyg. 2000 Feb;15(2):195–202. doi: 10.1080/104732200301692. [DOI] [PubMed] [Google Scholar]
  13. Lowry L. K. Role of biomarkers of exposure in the assessment of health risks. Toxicol Lett. 1995 May;77(1-3):31–38. doi: 10.1016/0378-4274(95)03268-1. [DOI] [PubMed] [Google Scholar]
  14. Löf A., Johanson G. Dose-dependent kinetics of inhaled styrene in man. IARC Sci Publ. 1993;(127):89–99. [PubMed] [Google Scholar]
  15. Marhuenda D., Prieto M. J., Periago J. F., Marti J., Perbellini L., Cardona A. Biological monitoring of styrene exposure and possible interference of acetone co-exposure. Int Arch Occup Environ Health. 1997;69(6):455–460. doi: 10.1007/s004200050174. [DOI] [PubMed] [Google Scholar]
  16. Peretz C., Goren A., Smid T., Kromhout H. Application of mixed-effects models for exposure assessment. Ann Occup Hyg. 2002 Jan;46(1):69–77. doi: 10.1093/annhyg/mef009. [DOI] [PubMed] [Google Scholar]
  17. Rappaport S. M. Assessment of long-term exposures to toxic substances in air. Ann Occup Hyg. 1991 Feb;35(1):61–121. doi: 10.1093/annhyg/35.1.61. [DOI] [PubMed] [Google Scholar]
  18. Rappaport S. M. Smoothing of exposure variability at the receptor: implications for health standards. Ann Occup Hyg. 1985;29(2):201–214. doi: 10.1093/annhyg/29.2.201. [DOI] [PubMed] [Google Scholar]
  19. Rappaport S. M., Symanski E., Yager J. W., Kupper L. L. The relationship between environmental monitoring and biological markers in exposure assessment. Environ Health Perspect. 1995 Apr;103 (Suppl 3):49–53. doi: 10.1289/ehp.95103s349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosenberg C., Ruonakangas A., Liukkonen T., Welling I., Jäppinen P. Exposure to monoterpenes in Finnish sawmills. Am J Ind Med. 1999 Sep;Suppl 1:149–151. doi: 10.1002/(sici)1097-0274(199909)36:1+<149::aid-ajim53>3.0.co;2-y. [DOI] [PubMed] [Google Scholar]
  21. Rothman N., Stewart W. F., Schulte P. A. Incorporating biomarkers into cancer epidemiology: a matrix of biomarker and study design categories. Cancer Epidemiol Biomarkers Prev. 1995 Jun;4(4):301–311. [PubMed] [Google Scholar]
  22. Saracci R. Comparing measurements of biomarkers with other measurements of exposure. IARC Sci Publ. 1997;(142):303–312. [PubMed] [Google Scholar]
  23. Schulte P. A., Waters M. Using molecular epidemiology in assessing exposure for risk assessment. Ann N Y Acad Sci. 1999;895:101–111. doi: 10.1111/j.1749-6632.1999.tb08079.x. [DOI] [PubMed] [Google Scholar]
  24. Sunesson A. L., Sundgren M., Levin J. O., Eriksson K., Carlson R. Evaluation of two adsorbents for diffusive sampling and thermal desorption-gas chromatographic analysis of monoterpenes in air. J Environ Monit. 1999 Feb;1(1):45–50. doi: 10.1039/a807657j. [DOI] [PubMed] [Google Scholar]
  25. Symanski E., Bergamaschi E., Mutti A. Inter- and intra-individual sources of variation in levels of urinary styrene metabolites. Int Arch Occup Environ Health. 2001 Jul;74(5):336–344. doi: 10.1007/pl00007951. [DOI] [PubMed] [Google Scholar]
  26. Symanski E., Sällsten G., Barregård L. Variability in airborne and biological measures of exposure to mercury in the chloralkali industry: implications for epidemiologic studies. Environ Health Perspect. 2000 Jun;108(6):569–573. doi: 10.1289/ehp.00108569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tielemans E., Kupper L. L., Kromhout H., Heederik D., Houba R. Individual-based and group-based occupational exposure assessment: some equations to evaluate different strategies. Ann Occup Hyg. 1998 Feb;42(2):115–119. doi: 10.1016/s0003-4878(97)00051-3. [DOI] [PubMed] [Google Scholar]
  28. Vinzents P. S., Schlünssen V., Feveile H., Schaumburg I. Variations in exposure to inhalable wood dust in the Danish furniture industry. Within- and between-worker and factory components estimated from passive dust sampling. Ann Occup Hyg. 2001 Oct;45(7):603–608. [PubMed] [Google Scholar]
  29. van Tongeren M. J., Kromhout H., Gardiner K., Calvert I. A., Harrington J. M. Assessment of the sensitivity of the relation between current exposure to carbon black and lung function parameters when using different grouping schemes. Am J Ind Med. 1999 Nov;36(5):548–556. doi: 10.1002/(sici)1097-0274(199911)36:5<548::aid-ajim7>3.0.co;2-v. [DOI] [PubMed] [Google Scholar]
  30. van Tongeren M., Gardiner K., Calvert I., Kromhout H., Harrington J. M. Efficiency of different grouping schemes for dust exposure in the European carbon black respiratory morbidity study. Occup Environ Med. 1997 Oct;54(10):714–719. doi: 10.1136/oem.54.10.714. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Occupational and Environmental Medicine are provided here courtesy of BMJ Publishing Group

RESOURCES