Skip to main content
Thorax logoLink to Thorax
. 1998 Oct;53(10):849–856. doi: 10.1136/thx.53.10.849

An improved murine model of asthma: selective airway inflammation, epithelial lesions and increased methacholine responsiveness following chronic exposure to aerosolised allergen

J Temelkovski 1, S Hogan 1, D Shepherd 1, P Foster 1, R Kumar 1
PMCID: PMC1745083  PMID: 10193371

Abstract

BACKGROUND—Existing murine models of asthma lack many of the inflammatory and epithelial changes that are typical of the human disease. Moreover, these models are frequently complicated by allergic alveolitis.
METHODS—High IgE responder BALB/c mice were systemically sensitised to ovalbumin and chronically challenged with low particle mass concentrations of aerosolised ovalbumin. Titres of anti-ovalbumin IgE in serum were measured at two weekly intervals by enzyme immunoassay, accumulation of inflammatory cells and histopathological abnormalities of the epithelium were quantified morphometrically in the trachea and the lungs, and airway reactivity was assessed by measuring bronchoconstriction following intravenous administration of methacholine.
RESULTS—Mice sensitised by two intraperitoneal injections of ovalbumin developed high titres of IgE antibodies to ovalbumin. Following exposure to low concentrations of aerosolised antigen for up to eight weeks these animals developed a progressive inflammatory response in the airways, characterised by the presence of intraepithelial eosinophils and by infiltration of the lamina propria with lymphoid/mononuclear cells, without associated alveolitis. Goblet cell hyperplasia/metaplasia was induced in the intrapulmonary airways, while epithelial thickening and subepithelial fibrosis were evident following chronic exposure. In parallel, the mice developed increased sensitivity to induction of bronchospasm, as well as increased maximal reactivity. Non-immunised mice exposed to aerosolised ovalbumin had low or absent anti-ovalbumin IgE and did not exhibit inflammatory or epithelial changes, but developed airway hyperreactivity.
CONCLUSIONS—This experimental model replicates many of the features of human asthma and should facilitate studies of pathogenetic mechanisms and of potential therapeutic agents. 



Full Text

The Full Text of this article is available as a PDF (215.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman V., Marini M., Vittori E., Bellini A., Vassali G., Mattoli S. Detection of cytokines and their cell sources in bronchial biopsy specimens from asthmatic patients. Relationship to atopic status, symptoms, and level of airway hyperresponsiveness. Chest. 1994 Mar;105(3):687–696. doi: 10.1378/chest.105.3.687. [DOI] [PubMed] [Google Scholar]
  2. Beasley R., Roche W. R., Roberts J. A., Holgate S. T. Cellular events in the bronchi in mild asthma and after bronchial provocation. Am Rev Respir Dis. 1989 Mar;139(3):806–817. doi: 10.1164/ajrccm/139.3.806. [DOI] [PubMed] [Google Scholar]
  3. Blyth D. I., Pedrick M. S., Savage T. J., Hessel E. M., Fattah D. Lung inflammation and epithelial changes in a murine model of atopic asthma. Am J Respir Cell Mol Biol. 1996 May;14(5):425–438. doi: 10.1165/ajrcmb.14.5.8624247. [DOI] [PubMed] [Google Scholar]
  4. Bousquet J., Chanez P., Lacoste J. Y., Barnéon G., Ghavanian N., Enander I., Venge P., Ahlstedt S., Simony-Lafontaine J., Godard P. Eosinophilic inflammation in asthma. N Engl J Med. 1990 Oct 11;323(15):1033–1039. doi: 10.1056/NEJM199010113231505. [DOI] [PubMed] [Google Scholar]
  5. Brusselle G. G., Kips J. C., Tavernier J. H., van der Heyden J. G., Cuvelier C. A., Pauwels R. A., Bluethmann H. Attenuation of allergic airway inflammation in IL-4 deficient mice. Clin Exp Allergy. 1994 Jan;24(1):73–80. doi: 10.1111/j.1365-2222.1994.tb00920.x. [DOI] [PubMed] [Google Scholar]
  6. Corry D. B., Folkesson H. G., Warnock M. L., Erle D. J., Matthay M. A., Wiener-Kronish J. P., Locksley R. M. Interleukin 4, but not interleukin 5 or eosinophils, is required in a murine model of acute airway hyperreactivity. J Exp Med. 1996 Jan 1;183(1):109–117. doi: 10.1084/jem.183.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Davies R. J., Devalia J. L. Asthma. Epithelial cells. Br Med Bull. 1992 Jan;48(1):85–96. doi: 10.1093/oxfordjournals.bmb.a072544. [DOI] [PubMed] [Google Scholar]
  8. Derksen F. J., Robinson N. E., Armstrong P. J., Stick J. A., Slocombe R. F. Airway reactivity in ponies with recurrent airway obstruction (heaves). J Appl Physiol (1985) 1985 Feb;58(2):598–604. doi: 10.1152/jappl.1985.58.2.598. [DOI] [PubMed] [Google Scholar]
  9. Ebina M., Takahashi T., Chiba T., Motomiya M. Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma. A 3-D morphometric study. Am Rev Respir Dis. 1993 Sep;148(3):720–726. doi: 10.1164/ajrccm/148.3.720. [DOI] [PubMed] [Google Scholar]
  10. Elwood W., Lötvall J. O., Barnes P. J., Chung K. F. Characterization of allergen-induced bronchial hyperresponsiveness and airway inflammation in actively sensitized brown-Norway rats. J Allergy Clin Immunol. 1991 Dec;88(6):951–960. doi: 10.1016/0091-6749(91)90253-k. [DOI] [PubMed] [Google Scholar]
  11. Eum S. Y., Hailé S., Lefort J., Huerre M., Vargaftig B. B. Eosinophil recruitment into the respiratory epithelium following antigenic challenge in hyper-IgE mice is accompanied by interleukin 5-dependent bronchial hyperresponsiveness. Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12290–12294. doi: 10.1073/pnas.92.26.12290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Foster P. S., Hogan S. P., Ramsay A. J., Matthaei K. I., Young I. G. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med. 1996 Jan 1;183(1):195–201. doi: 10.1084/jem.183.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hamelmann E., Schwarze J., Takeda K., Oshiba A., Larsen G. L., Irvin C. G., Gelfand E. W. Noninvasive measurement of airway responsiveness in allergic mice using barometric plethysmography. Am J Respir Crit Care Med. 1997 Sep;156(3 Pt 1):766–775. doi: 10.1164/ajrccm.156.3.9606031. [DOI] [PubMed] [Google Scholar]
  14. Herz U., Lumpp U., Da Palma J. C., Enssle K., Takatsu K., Schnoy N., Daser A., Köttgen E., Wahn U., Renz H. The relevance of murine animal models to study the development of allergic bronchial asthma. Immunol Cell Biol. 1996 Apr;74(2):209–217. doi: 10.1038/icb.1996.30. [DOI] [PubMed] [Google Scholar]
  15. Hessel E. M., Van Oosterhout A. J., Hofstra C. L., De Bie J. J., Garssen J., Van Loveren H., Verheyen A. K., Savelkoul H. F., Nijkamp F. P. Bronchoconstriction and airway hyperresponsiveness after ovalbumin inhalation in sensitized mice. Eur J Pharmacol. 1995 Dec 7;293(4):401–412. doi: 10.1016/0926-6917(95)90061-6. [DOI] [PubMed] [Google Scholar]
  16. Hogan S. P., Mould A., Kikutani H., Ramsay A. J., Foster P. S. Aeroallergen-induced eosinophilic inflammation, lung damage, and airways hyperreactivity in mice can occur independently of IL-4 and allergen-specific immunoglobulins. J Clin Invest. 1997 Mar 15;99(6):1329–1339. doi: 10.1172/JCI119292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holt P. G., Batty J. E., Turner K. J. Inhibition of specific IgE responses in mice by pre-exposure to inhaled antigen. Immunology. 1981 Mar;42(3):409–417. [PMC free article] [PubMed] [Google Scholar]
  18. Humbert M., Corrigan C. J., Kimmitt P., Till S. J., Kay A. B., Durham S. R. Relationship between IL-4 and IL-5 mRNA expression and disease severity in atopic asthma. Am J Respir Crit Care Med. 1997 Sep;156(3 Pt 1):704–708. doi: 10.1164/ajrccm.156.3.9610033. [DOI] [PubMed] [Google Scholar]
  19. James A. L., Paré P. D., Hogg J. C. The mechanics of airway narrowing in asthma. Am Rev Respir Dis. 1989 Jan;139(1):242–246. doi: 10.1164/ajrccm/139.1.242. [DOI] [PubMed] [Google Scholar]
  20. Jeffery P. K. Pathology of asthma. Br Med Bull. 1992 Jan;48(1):23–39. doi: 10.1093/oxfordjournals.bmb.a072537. [DOI] [PubMed] [Google Scholar]
  21. Jeffery P. K., Wardlaw A. J., Nelson F. C., Collins J. V., Kay A. B. Bronchial biopsies in asthma. An ultrastructural, quantitative study and correlation with hyperreactivity. Am Rev Respir Dis. 1989 Dec;140(6):1745–1753. doi: 10.1164/ajrccm/140.6.1745. [DOI] [PubMed] [Google Scholar]
  22. Karol M. H. Animal models of occupational asthma. Eur Respir J. 1994 Mar;7(3):555–568. doi: 10.1183/09031936.94.07030555. [DOI] [PubMed] [Google Scholar]
  23. Kay A. B. Pathology of mild, severe, and fatal asthma. Am J Respir Crit Care Med. 1996 Aug;154(2 Pt 2):S66–S69. doi: 10.1164/ajrccm/154.2_Pt_2.S66. [DOI] [PubMed] [Google Scholar]
  24. Kips J. C., Cuvelier C. A., Pauwels R. A. Effect of acute and chronic antigen inhalation on airway morphology and responsiveness in actively sensitized rats. Am Rev Respir Dis. 1992 Jun;145(6):1306–1310. doi: 10.1164/ajrccm/145.6.1306. [DOI] [PubMed] [Google Scholar]
  25. Korsgren M., Erjefält J. S., Korsgren O., Sundler F., Persson C. G. Allergic eosinophil-rich inflammation develops in lungs and airways of B cell-deficient mice. J Exp Med. 1997 Mar 3;185(5):885–892. doi: 10.1084/jem.185.5.885. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kraft M., Djukanovic R., Wilson S., Holgate S. T., Martin R. J. Alveolar tissue inflammation in asthma. Am J Respir Crit Care Med. 1996 Nov;154(5):1505–1510. doi: 10.1164/ajrccm.154.5.8912772. [DOI] [PubMed] [Google Scholar]
  27. Kung T. T., Jones H., Adams G. K., 3rd, Umland S. P., Kreutner W., Egan R. W., Chapman R. W., Watnick A. S. Characterization of a murine model of allergic pulmonary inflammation. Int Arch Allergy Immunol. 1994 Sep;105(1):83–90. doi: 10.1159/000236807. [DOI] [PubMed] [Google Scholar]
  28. Laitinen L. A., Laitinen A., Haahtela T. Airway mucosal inflammation even in patients with newly diagnosed asthma. Am Rev Respir Dis. 1993 Mar;147(3):697–704. doi: 10.1164/ajrccm/147.3.697. [DOI] [PubMed] [Google Scholar]
  29. McFadden E. R., Jr, Gilbert I. A. Asthma. N Engl J Med. 1992 Dec 31;327(27):1928–1937. doi: 10.1056/NEJM199212313272708. [DOI] [PubMed] [Google Scholar]
  30. McMenamin C., Pimm C., McKersey M., Holt P. G. Regulation of IgE responses to inhaled antigen in mice by antigen-specific gamma delta T cells. Science. 1994 Sep 23;265(5180):1869–1871. doi: 10.1126/science.7916481. [DOI] [PubMed] [Google Scholar]
  31. Mehlhop P. D., van de Rijn M., Goldberg A. B., Brewer J. P., Kurup V. P., Martin T. R., Oettgen H. C. Allergen-induced bronchial hyperreactivity and eosinophilic inflammation occur in the absence of IgE in a mouse model of asthma. Proc Natl Acad Sci U S A. 1997 Feb 18;94(4):1344–1349. doi: 10.1073/pnas.94.4.1344. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Nagai H., Yamaguchi S., Inagaki N., Tsuruoka N., Hitoshi Y., Takatsu K. Effect of anti-IL-5 monoclonal antibody on allergic bronchial eosinophilia and airway hyperresponsiveness in mice. Life Sci. 1993;53(15):PL243–PL247. doi: 10.1016/0024-3205(93)90545-e. [DOI] [PubMed] [Google Scholar]
  33. Ohkawara Y., Lei X. F., Stämpfli M. R., Marshall J. S., Xing Z., Jordana M. Cytokine and eosinophil responses in the lung, peripheral blood, and bone marrow compartments in a murine model of allergen-induced airways inflammation. Am J Respir Cell Mol Biol. 1997 May;16(5):510–520. doi: 10.1165/ajrcmb.16.5.9160833. [DOI] [PubMed] [Google Scholar]
  34. Padrid P., Snook S., Finucane T., Shiue P., Cozzi P., Solway J., Leff A. R. Persistent airway hyperresponsiveness and histologic alterations after chronic antigen challenge in cats. Am J Respir Crit Care Med. 1995 Jan;151(1):184–193. doi: 10.1164/ajrccm.151.1.7812551. [DOI] [PubMed] [Google Scholar]
  35. Persson C. G., Erjefält J. S. "Ultimate activation" of eosinophils in vivo: lysis and release of clusters of free eosinophil granules (Cfegs). Thorax. 1997 Jun;52(6):569–574. doi: 10.1136/thx.52.6.569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Renz H., Smith H. R., Henson J. E., Ray B. S., Irvin C. G., Gelfand E. W. Aerosolized antigen exposure without adjuvant causes increased IgE production and increased airway responsiveness in the mouse. J Allergy Clin Immunol. 1992 Jun;89(6):1127–1138. doi: 10.1016/0091-6749(92)90296-e. [DOI] [PubMed] [Google Scholar]
  37. Richards I. M. Mouse models of allergic disease; how do they relate to asthma in man? Clin Exp Allergy. 1996 Jun;26(6):618–620. [PubMed] [Google Scholar]
  38. Rossi G. A., Szapiel S., Ferrans V. J., Crystal R. G. Susceptibility to experimental interstitial lung disease is modified by immune- and non-immune-related genes. Am Rev Respir Dis. 1987 Feb;135(2):448–455. doi: 10.1164/arrd.1987.135.2.448. [DOI] [PubMed] [Google Scholar]
  39. Rylander R., Burrell R. Endotoxins in inhalation research. Summary of conclusions of a workshop held at Clearwater, Florida, U.S.A., 28-30 September 1987. Ann Occup Hyg. 1988;32(4):553–556. doi: 10.1093/annhyg/32.4.553. [DOI] [PubMed] [Google Scholar]
  40. Sly P. D., Hayden M. J., Peták F., Hantos Z. Measurement of low-frequency respiratory impedance in infants. Am J Respir Crit Care Med. 1996 Jul;154(1):161–166. doi: 10.1164/ajrccm.154.1.8680673. [DOI] [PubMed] [Google Scholar]
  41. Stafford S., Li H., Forsythe P. A., Ryan M., Bravo R., Alam R. Monocyte chemotactic protein-3 (MCP-3)/fibroblast-induced cytokine (FIC) in eosinophilic inflammation of the airways and the inhibitory effects of an anti-MCP-3/FIC antibody. J Immunol. 1997 May 15;158(10):4953–4960. [PubMed] [Google Scholar]
  42. Sterk P. J., Bel E. H. Bronchial hyperresponsiveness: the need for a distinction between hypersensitivity and excessive airway narrowing. Eur Respir J. 1989 Mar;2(3):267–274. [PubMed] [Google Scholar]
  43. Tang C., Rolland I. M., Ward C., Bish R., Thien F., Walters E. H. Seasonal comparison of cytokine profiles in atopic asthmatics and atopic non-asthmatics. Am J Respir Crit Care Med. 1996 Dec;154(6 Pt 1):1615–1622. doi: 10.1164/ajrccm.154.6.8970344. [DOI] [PubMed] [Google Scholar]
  44. Toelle B. G., Peat J. K., Salome C. M., Mellis C. M., Woolcock A. J. Toward a definition of asthma for epidemiology. Am Rev Respir Dis. 1992 Sep;146(3):633–637. doi: 10.1164/ajrccm/146.3.633. [DOI] [PubMed] [Google Scholar]
  45. Wardlaw A. J., Dunnette S., Gleich G. J., Collins J. V., Kay A. B. Eosinophils and mast cells in bronchoalveolar lavage in subjects with mild asthma. Relationship to bronchial hyperreactivity. Am Rev Respir Dis. 1988 Jan;137(1):62–69. doi: 10.1164/ajrccm/137.1.62. [DOI] [PubMed] [Google Scholar]
  46. Wegner C. D., Gundel R. H., Abraham W. M., Schulman E. S., Kontny M. J., Lazer E. S., Homon C. A., Graham A. G., Torcellini C. A., Clarke C. C. The role of 5-lipoxygenase products in preclinical models of asthma. J Allergy Clin Immunol. 1993 Apr;91(4):917–929. doi: 10.1016/0091-6749(93)90350-o. [DOI] [PubMed] [Google Scholar]
  47. Wilson M. R., Easterbrook-Smith S. B. Enzyme complex amplification--a signal amplification method for use in enzyme immunoassays. Anal Biochem. 1993 Feb 15;209(1):183–187. doi: 10.1006/abio.1993.1100. [DOI] [PubMed] [Google Scholar]
  48. Ying S., Durham S. R., Corrigan C. J., Hamid Q., Kay A. B. Phenotype of cells expressing mRNA for TH2-type (interleukin 4 and interleukin 5) and TH1-type (interleukin 2 and interferon gamma) cytokines in bronchoalveolar lavage and bronchial biopsies from atopic asthmatic and normal control subjects. Am J Respir Cell Mol Biol. 1995 May;12(5):477–487. doi: 10.1165/ajrcmb.12.5.7742012. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES