Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1996 Dec;64(12):5373–5383. doi: 10.1128/iai.64.12.5373-5383.1996

Nonopsonic binding of Mycobacterium tuberculosis to human complement receptor type 3 expressed in Chinese hamster ovary cells.

C Cywes 1, N L Godenir 1, H C Hoppe 1, R R Scholle 1, L M Steyn 1, R E Kirsch 1, M R Ehlers 1
PMCID: PMC174532  PMID: 8945590

Abstract

Nonopsonic invasion of mononuclear phagocytes by Mycobacterium tuberculosis is likely important in the establishment of a primary infection in the lung. M. tuberculosis binds to a variety of phagocyte receptors, of which the mannose receptor and complement receptor type 3 (CR3) may support nonopsonic binding. CR3, a beta2 integrin, is a target for diverse intracellular pathogens, but its role in nonopsonic binding remains uncertain. We have examined the binding of M. tuberculosis H37Rv to human CR3 heterologously expressed in Chinese hamster ovary (CHO) cells, thereby circumventing the problems of competing receptors and endogenously synthesized complement, which are inherent in studies with mononuclear phagocytes. The surface expression of CD11b and CD18 was assessed by immunofluorescence, immunobead binding, flow cytometry, and immunoprecipitation with anti-CD11b and anti-CD18 monoclonal antibodies (MAbs). The functional activity of the surface-expressed CD11b/CD18 (CR3) heterodimer was confirmed by rosetting with C3bi-coated microspheres. We found that M. tuberculosis bound four- to fivefold more avidly to CR3-expressing CHO cells than to wild-type cells and, importantly, that this binding was at similar levels in the presence of fresh or heat-inactivated human or bovine serum or no serum. In contrast, Mycobacterium smegmatis bound poorly to CR3-expressing CHO cells in the absence of serum, but after opsonization in serum, binding was comparable to that of M. tuberculosis. The binding of M. tuberculosis to the transfected CHO cells was CR3 specific, as it was inhibited by anti-CR3 MAbs, particularly the anti-CD11b MAbs LM2/1 (I domain epitope) and OKM1 (C-terminal epitope), neither of which inhibit C3bi binding. MAb 2LPM19c, which recognizes the C3bi-binding site on CD11b, had little or no effect on M. tuberculosis binding. The converse was found for the binding of opsonized M. smegmatis, which was strongly inhibited by 2LPM19c but unaffected by LM2/1 or OKM1. CR3-specific binding was also evidenced by the failure of M. tuberculosis to bind to CHO cells transfected with an irrelevant surface protein (angiotensin-converting enzyme) in the presence or absence of serum. We conclude that the binding of M. tuberculosis H37Rv to CR3 expressed in CHO cells is predominantly nonopsonic and that the organism likely expresses a ligand that binds directly to CR3.

Full Text

The Full Text of this article is available as a PDF (490.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Antal J. M., Cunningham J. V., Goodrum K. J. Opsonin-independent phagocytosis of group B streptococci: role of complement receptor type three. Infect Immun. 1992 Mar;60(3):1114–1121. doi: 10.1128/iai.60.3.1114-1121.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arnaout M. A., Dana N., Gupta S. K., Tenen D. G., Fathallah D. M. Point mutations impairing cell surface expression of the common beta subunit (CD18) in a patient with leukocyte adhesion molecule (Leu-CAM) deficiency. J Clin Invest. 1990 Mar;85(3):977–981. doi: 10.1172/JCI114529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Arnaout M. A., Gupta S. K., Pierce M. W., Tenen D. G. Amino acid sequence of the alpha subunit of human leukocyte adhesion receptor Mo1 (complement receptor type 3). J Cell Biol. 1988 Jun;106(6):2153–2158. doi: 10.1083/jcb.106.6.2153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Berton G., Laudanna C., Sorio C., Rossi F. Generation of signals activating neutrophil functions by leukocyte integrins: LFA-1 and gp150/95, but not CR3, are able to stimulate the respiratory burst of human neutrophils. J Cell Biol. 1992 Feb;116(4):1007–1017. doi: 10.1083/jcb.116.4.1007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blackwell J. M., Ezekowitz R. A., Roberts M. B., Channon J. Y., Sim R. B., Gordon S. Macrophage complement and lectin-like receptors bind Leishmania in the absence of serum. J Exp Med. 1985 Jul 1;162(1):324–331. doi: 10.1084/jem.162.1.324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bloom B. R., Murray C. J. Tuberculosis: commentary on a reemergent killer. Science. 1992 Aug 21;257(5073):1055–1064. doi: 10.1126/science.257.5073.1055. [DOI] [PubMed] [Google Scholar]
  7. Brennan P. J., Nikaido H. The envelope of mycobacteria. Annu Rev Biochem. 1995;64:29–63. doi: 10.1146/annurev.bi.64.070195.000333. [DOI] [PubMed] [Google Scholar]
  8. Dahle C. E., Macfarlane D. E. Isolation of RNA from cells in culture using Catrimox-14 cationic surfactant. Biotechniques. 1993 Dec;15(6):1102–1105. [PubMed] [Google Scholar]
  9. Diamond M. S., Alon R., Parkos C. A., Quinn M. T., Springer T. A. Heparin is an adhesive ligand for the leukocyte integrin Mac-1 (CD11b/CD1). J Cell Biol. 1995 Sep;130(6):1473–1482. doi: 10.1083/jcb.130.6.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Diamond M. S., Garcia-Aguilar J., Bickford J. K., Corbi A. L., Springer T. A. The I domain is a major recognition site on the leukocyte integrin Mac-1 (CD11b/CD18) for four distinct adhesion ligands. J Cell Biol. 1993 Feb;120(4):1031–1043. doi: 10.1083/jcb.120.4.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Downing J. F., Pasula R., Wright J. R., Twigg H. L., 3rd, Martin W. J., 2nd Surfactant protein a promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4848–4852. doi: 10.1073/pnas.92.11.4848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ehlers M. R., Chen Y. N., Riordan J. F. Purification and characterization of recombinant human testis angiotensin-converting enzyme expressed in Chinese hamster ovary cells. Protein Expr Purif. 1991 Feb;2(1):1–9. doi: 10.1016/1046-5928(91)90001-y. [DOI] [PubMed] [Google Scholar]
  13. Ehlers M. R., Chen Y. N., Riordan J. F. Spontaneous solubilization of membrane-bound human testis angiotensin-converting enzyme expressed in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):1009–1013. doi: 10.1073/pnas.88.3.1009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ezekowitz R. A., Sim R. B., MacPherson G. G., Gordon S. Interaction of human monocytes, macrophages, and polymorphonuclear leukocytes with zymosan in vitro. Role of type 3 complement receptors and macrophage-derived complement. J Clin Invest. 1985 Dec;76(6):2368–2376. doi: 10.1172/JCI112249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Falkow S., Isberg R. R., Portnoy D. A. The interaction of bacteria with mammalian cells. Annu Rev Cell Biol. 1992;8:333–363. doi: 10.1146/annurev.cb.08.110192.002001. [DOI] [PubMed] [Google Scholar]
  16. Gaynor C. D., McCormack F. X., Voelker D. R., McGowan S. E., Schlesinger L. S. Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J Immunol. 1995 Dec 1;155(11):5343–5351. [PubMed] [Google Scholar]
  17. Harris N., Super M., Rits M., Chang G., Ezekowitz R. A. Characterization of the murine macrophage mannose receptor: demonstration that the downregulation of receptor expression mediated by interferon-gamma occurs at the level of transcription. Blood. 1992 Nov 1;80(9):2363–2373. [PubMed] [Google Scholar]
  18. Hirsch C. S., Ellner J. J., Russell D. G., Rich E. A. Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol. 1994 Jan 15;152(2):743–753. [PubMed] [Google Scholar]
  19. Hondalus M. K., Diamond M. S., Rosenthal L. A., Springer T. A., Mosser D. M. The intracellular bacterium Rhodococcus equi requires Mac-1 to bind to mammalian cells. Infect Immun. 1993 Jul;61(7):2919–2929. doi: 10.1128/iai.61.7.2919-2929.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Hynes R. O. Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 1992 Apr 3;69(1):11–25. doi: 10.1016/0092-8674(92)90115-s. [DOI] [PubMed] [Google Scholar]
  21. Ingalls R. R., Golenbock D. T. CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide. J Exp Med. 1995 Apr 1;181(4):1473–1479. doi: 10.1084/jem.181.4.1473. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Isberg R. R., Tran Van Nhieu G. Binding and internalization of microorganisms by integrin receptors. Trends Microbiol. 1994 Jan;2(1):10–14. doi: 10.1016/0966-842x(94)90338-7. [DOI] [PubMed] [Google Scholar]
  23. Kishimoto T. K., O'Connor K., Lee A., Roberts T. M., Springer T. A. Cloning of the beta subunit of the leukocyte adhesion proteins: homology to an extracellular matrix receptor defines a novel supergene family. Cell. 1987 Feb 27;48(4):681–690. doi: 10.1016/0092-8674(87)90246-7. [DOI] [PubMed] [Google Scholar]
  24. Krauss J. C., PooH, Xue W., Mayo-Bond L., Todd R. F., 3rd, Petty H. R. Reconstitution of antibody-dependent phagocytosis in fibroblasts expressing Fc gamma receptor IIIB and the complement receptor type 3. J Immunol. 1994 Aug 15;153(4):1769–1777. [PubMed] [Google Scholar]
  25. Larson R. S., Springer T. A. Structure and function of leukocyte integrins. Immunol Rev. 1990 Apr;114:181–217. doi: 10.1111/j.1600-065x.1990.tb00565.x. [DOI] [PubMed] [Google Scholar]
  26. Li R., Xie J., Kantor C., Koistinen V., Altieri D. C., Nortamo P., Gahmberg C. G. A peptide derived from the intercellular adhesion molecule-2 regulates the avidity of the leukocyte integrins CD11b/CD18 and CD11c/CD18. J Cell Biol. 1995 May;129(4):1143–1153. doi: 10.1083/jcb.129.4.1143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Mokoena T., Gordon S. Human macrophage activation. Modulation of mannosyl, fucosyl receptor activity in vitro by lymphokines, gamma and alpha interferons, and dexamethasone. J Clin Invest. 1985 Feb;75(2):624–631. doi: 10.1172/JCI111740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Mosser D. M., Springer T. A., Diamond M. S. Leishmania promastigotes require opsonic complement to bind to the human leukocyte integrin Mac-1 (CD11b/CD18). J Cell Biol. 1992 Jan;116(2):511–520. doi: 10.1083/jcb.116.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Moyle M., Foster D. L., McGrath D. E., Brown S. M., Laroche Y., De Meutter J., Stanssens P., Bogowitz C. A., Fried V. A., Ely J. A. A hookworm glycoprotein that inhibits neutrophil function is a ligand of the integrin CD11b/CD18. J Biol Chem. 1994 Apr 1;269(13):10008–10015. [PubMed] [Google Scholar]
  30. O'Toole T. E., Katagiri Y., Faull R. J., Peter K., Tamura R., Quaranta V., Loftus J. C., Shattil S. J., Ginsberg M. H. Integrin cytoplasmic domains mediate inside-out signal transduction. J Cell Biol. 1994 Mar;124(6):1047–1059. doi: 10.1083/jcb.124.6.1047. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Peter K., O'Toole T. E. Modulation of cell adhesion by changes in alpha L beta 2 (LFA-1, CD11a/CD18) cytoplasmic domain/cytoskeleton interaction. J Exp Med. 1995 Jan 1;181(1):315–326. doi: 10.1084/jem.181.1.315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Petty H. R., Todd R. F., 3rd Integrins as promiscuous signal transduction devices. Immunol Today. 1996 May;17(5):209–212. doi: 10.1016/0167-5699(96)30013-3. [DOI] [PubMed] [Google Scholar]
  33. Relman D., Tuomanen E., Falkow S., Golenbock D. T., Saukkonen K., Wright S. D. Recognition of a bacterial adhesion by an integrin: macrophage CR3 (alpha M beta 2, CD11b/CD18) binds filamentous hemagglutinin of Bordetella pertussis. Cell. 1990 Jun 29;61(7):1375–1382. doi: 10.1016/0092-8674(90)90701-f. [DOI] [PubMed] [Google Scholar]
  34. Reynolds H. Y., Newball H. H. Analysis of proteins and respiratory cells obtained from human lungs by bronchial lavage. J Lab Clin Med. 1974 Oct;84(4):559–573. [PubMed] [Google Scholar]
  35. Rieu P., Ueda T., Haruta I., Sharma C. P., Arnaout M. A. The A-domain of beta 2 integrin CR3 (CD11b/CD18) is a receptor for the hookworm-derived neutrophil adhesion inhibitor NIF. J Cell Biol. 1994 Dec;127(6 Pt 2):2081–2091. doi: 10.1083/jcb.127.6.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ross G. D., Cain J. A., Lachmann P. J. Membrane complement receptor type three (CR3) has lectin-like properties analogous to bovine conglutinin as functions as a receptor for zymosan and rabbit erythrocytes as well as a receptor for iC3b. J Immunol. 1985 May;134(5):3307–3315. [PubMed] [Google Scholar]
  37. Roubey R. A., Ross G. D., Merrill J. T., Walton F., Reed W., Winchester R. J., Buyon J. P. Staurosporine inhibits neutrophil phagocytosis but not iC3b binding mediated by CR3 (CD11b/CD18). J Immunol. 1991 May 15;146(10):3557–3562. [PubMed] [Google Scholar]
  38. Schlesinger L. S., Bellinger-Kawahara C. G., Payne N. R., Horwitz M. A. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol. 1990 Apr 1;144(7):2771–2780. [PubMed] [Google Scholar]
  39. Schlesinger L. S., Horwitz M. A. Phenolic glycolipid-1 of Mycobacterium leprae binds complement component C3 in serum and mediates phagocytosis by human monocytes. J Exp Med. 1991 Nov 1;174(5):1031–1038. doi: 10.1084/jem.174.5.1031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Schlesinger L. S., Hull S. R., Kaufman T. M. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J Immunol. 1994 Apr 15;152(8):4070–4079. [PubMed] [Google Scholar]
  41. Schlesinger L. S. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol. 1993 Apr 1;150(7):2920–2930. [PubMed] [Google Scholar]
  42. Sigal L. J., Wylie D. E. A semiquantitative rosetting assay for detection of cell-surface class I major histocompatibility complex molecules. Biotechniques. 1994 Oct;17(4):776–780. [PubMed] [Google Scholar]
  43. Stokes R. W., Haidl I. D., Jefferies W. A., Speert D. P. Mycobacteria-macrophage interactions. Macrophage phenotype determines the nonopsonic binding of Mycobacterium tuberculosis to murine macrophages. J Immunol. 1993 Dec 15;151(12):7067–7076. [PubMed] [Google Scholar]
  44. Thornton B. P., Vetvicka V., Pitman M., Goldman R. C., Ross G. D. Analysis of the sugar specificity and molecular location of the beta-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J Immunol. 1996 Feb 1;156(3):1235–1246. [PubMed] [Google Scholar]
  45. Wozencraft A. O., Sayers G., Blackwell J. M. Macrophage type 3 complement receptors mediate serum-independent binding of Leishmania donovani. Detection of macrophage-derived complement on the parasite surface by immunoelectron microscopy. J Exp Med. 1986 Oct 1;164(4):1332–1337. doi: 10.1084/jem.164.4.1332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wright S. D., Silverstein S. C. Receptors for C3b and C3bi promote phagocytosis but not the release of toxic oxygen from human phagocytes. J Exp Med. 1983 Dec 1;158(6):2016–2023. doi: 10.1084/jem.158.6.2016. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES