Skip to main content
Thorax logoLink to Thorax
. 1998 Sep;53(9):775–779. doi: 10.1136/thx.53.9.775

Exhalation flow and pressure-controlled reservoir collection of exhaled nitric oxide for remote and delayed analysis

P Paredi 1, S Loukides 1, S Ward 1, D Cramer 1, M Spicer 1, S Kharitonov 1, P Barnes 1
PMCID: PMC1745326  PMID: 10319060

Abstract

BACKGROUND—Expiratory flow rate, soft palate closure, and dead space air may influence exhaled levels of nitric oxide (NO). These factors have not been evaluated in the reservoir collection of NO.
METHODS—Exhaled NO was collected into a reservoir during a single flow and pressure controlled exhalation.
RESULTS—NO collected in a reservoir containing silica gel was stable for 24 hours. Nasally delivered 4.8% argon measured by mass spectrometry did not contaminate exhaled argon levels (0.1 (0.02)%) in five volunteers during exhalation against a resistance (10 (0.5) cmH2O), hence proving an effective soft palate closure. Exhaled NO in the reservoir was 11 (0.2) ppb, 8.6 (0.1) ppb, 7.1 (0.6) ppb, and 6.6 (0.4) ppb in five normal subjects and 48.3 (18) ppb, 20.3(12) ppb, 16.9 (0.3) ppb and 10.1 (0.4) ppb in 10 asthmatic subjects at four studied expiratory flows (5-6, 7-8, 10-11, and 12-13 l/min, respectively), with NO levels equal to direct measurement (7.3(0.5) ppb and 17.4 (0.5) ppb for normal and asthmatic subjects respectively, p<0.05) at the flow rate 10-11 l/min. Elimination of dead space proved necessary to provide NO levels comparable to the direct measurement. Exhaled NO collected into the reservoir without dead space during flow controlled exhalation against mild resistance provided close agreement (mean (SD) difference -0.21 (0.68), coefficient of variation 4.58%) with direct measurement in 74 patients (NO range 1-69 ppb).
CONCLUSIONS—Flow and pressure controlled collection of exhaled NO into a reservoir with silica gel provides values identical to the direct measurement and may be used to monitor asthma at home and where analysers are not on site.



Full Text

The Full Text of this article is available as a PDF (123.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alving K., Weitzberg E., Lundberg J. M. Increased amount of nitric oxide in exhaled air of asthmatics. Eur Respir J. 1993 Oct;6(9):1368–1370. [PubMed] [Google Scholar]
  2. Balfour-Lynn I. M., Laverty A., Dinwiddie R. Reduced upper airway nitric oxide in cystic fibrosis. Arch Dis Child. 1996 Oct;75(4):319–322. doi: 10.1136/adc.75.4.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barnes P. J., Kharitonov S. A. Exhaled nitric oxide: a new lung function test. Thorax. 1996 Mar;51(3):233–237. doi: 10.1136/thx.51.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bland J. M., Altman D. G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet. 1986 Feb 8;1(8476):307–310. [PubMed] [Google Scholar]
  5. Borland C., Cox Y., Higenbottam T. Measurement of exhaled nitric oxide in man. Thorax. 1993 Nov;48(11):1160–1162. doi: 10.1136/thx.48.11.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cremona G., Higenbottam T., Takao M., Hall L., Bower E. A. Exhaled nitric oxide in isolated pig lungs. J Appl Physiol (1985) 1995 Jan;78(1):59–63. doi: 10.1152/jappl.1995.78.1.59. [DOI] [PubMed] [Google Scholar]
  7. Dillon W. C., Hampl V., Shultz P. J., Rubins J. B., Archer S. L. Origins of breath nitric oxide in humans. Chest. 1996 Oct;110(4):930–938. doi: 10.1378/chest.110.4.930. [DOI] [PubMed] [Google Scholar]
  8. Högman M., Strömberg S., Schedin U., Frostell C., Hedenstierna G., Gustafsson L. E. Nitric oxide from the human respiratory tract efficiently quantified by standardized single breath measurements. Acta Physiol Scand. 1997 Apr;159(4):345–346. doi: 10.1046/j.1365-201X.1997.00101.x. [DOI] [PubMed] [Google Scholar]
  9. Kharitonov S. A., Barnes P. J. Nasal contribution to exhaled nitric oxide during exhalation against resistance or during breath holding. Thorax. 1997 Jun;52(6):540–544. doi: 10.1136/thx.52.6.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kharitonov S. A., Chung K. F., Evans D., O'Connor B. J., Barnes P. J. Increased exhaled nitric oxide in asthma is mainly derived from the lower respiratory tract. Am J Respir Crit Care Med. 1996 Jun;153(6 Pt 1):1773–1780. doi: 10.1164/ajrccm.153.6.8665033. [DOI] [PubMed] [Google Scholar]
  11. Kharitonov S. A., Wells A. U., O'Connor B. J., Cole P. J., Hansell D. M., Logan-Sinclair R. B., Barnes P. J. Elevated levels of exhaled nitric oxide in bronchiectasis. Am J Respir Crit Care Med. 1995 Jun;151(6):1889–1893. doi: 10.1164/ajrccm.151.6.7767536. [DOI] [PubMed] [Google Scholar]
  12. Kharitonov S. A., Yates D., Robbins R. A., Logan-Sinclair R., Shinebourne E. A., Barnes P. J. Increased nitric oxide in exhaled air of asthmatic patients. Lancet. 1994 Jan 15;343(8890):133–135. doi: 10.1016/s0140-6736(94)90931-8. [DOI] [PubMed] [Google Scholar]
  13. Kharitonov S., Alving K., Barnes P. J. Exhaled and nasal nitric oxide measurements: recommendations. The European Respiratory Society Task Force. Eur Respir J. 1997 Jul;10(7):1683–1693. doi: 10.1183/09031936.97.10071683. [DOI] [PubMed] [Google Scholar]
  14. Lundberg J. O., Farkas-Szallasi T., Weitzberg E., Rinder J., Lidholm J., Anggåard A., Hökfelt T., Lundberg J. M., Alving K. High nitric oxide production in human paranasal sinuses. Nat Med. 1995 Apr;1(4):370–373. doi: 10.1038/nm0495-370. [DOI] [PubMed] [Google Scholar]
  15. Lundberg J. O., Nordvall S. L., Weitzberg E., Kollberg H., Alving K. Exhaled nitric oxide in paediatric asthma and cystic fibrosis. Arch Dis Child. 1996 Oct;75(4):323–326. doi: 10.1136/adc.75.4.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lundberg J. O., Weitzberg E., Lundberg J. M., Alving K. Nitric oxide in exhaled air. Eur Respir J. 1996 Dec;9(12):2671–2680. doi: 10.1183/09031936.96.09122671. [DOI] [PubMed] [Google Scholar]
  17. Massaro A. F., Gaston B., Kita D., Fanta C., Stamler J. S., Drazen J. M. Expired nitric oxide levels during treatment of acute asthma. Am J Respir Crit Care Med. 1995 Aug;152(2):800–803. doi: 10.1164/ajrccm.152.2.7633745. [DOI] [PubMed] [Google Scholar]
  18. Maziak W., Loukides S., Culpitt S., Sullivan P., Kharitonov S. A., Barnes P. J. Exhaled nitric oxide in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1998 Mar;157(3 Pt 1):998–1002. doi: 10.1164/ajrccm.157.3.97-05009. [DOI] [PubMed] [Google Scholar]
  19. Silkoff P. E., McClean P. A., Slutsky A. S., Furlott H. G., Hoffstein E., Wakita S., Chapman K. R., Szalai J. P., Zamel N. Marked flow-dependence of exhaled nitric oxide using a new technique to exclude nasal nitric oxide. Am J Respir Crit Care Med. 1997 Jan;155(1):260–267. doi: 10.1164/ajrccm.155.1.9001322. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES