Abstract
BACKGROUND—Although smoking is the major causal factor in the development of chronic obstructive pulmonary disease (COPD), only 10-20% of chronic heavy cigarette smokers develop symptomatic COPD which suggests the presence of genetic susceptibility. This genetic susceptibility to COPD might depend on variations in enzyme activities that detoxify cigarette smoke products such as microsomal epoxide hydrolase (mEPHX) and glutathione-S transferase (GST). As there is increasing evidence that several genes influence the development of COPD, multiple gene polymorphisms should be investigated to find out the genetic susceptibility to COPD. METHODS—The genotypes of 83 patients with COPD and 76 healthy smoking control subjects were determined by polymerase chain reaction (PCR) followed by restriction fragment length polymorphism (PCR-RFLP) for the mEPHX gene, and multiplex PCR for GST M1 and GST T1 genes. The frequencies of polymorphic genotypes of mEPHX, GST M1, and GST T1 genes were compared both individually and in combination in patients with COPD and healthy smokers. RESULTS—No differences were observed in the frequency of polymorphic genotypes in exons 3 and 4 of mEPHX, GST M1, and GST T1 genes between patients with COPD and healthy smokers. The frequencies of any combination of these genotypes also showed no differences between the COPD group and the control group. CONCLUSIONS—Genetic polymorphisms in mEPHX, GST M1, and GST T1 genes are not associated with the development of COPD in Koreans.
Full Text
The Full Text of this article is available as a PDF (627.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bascom R. Differential susceptibility to tobacco smoke: possible mechanisms. Pharmacogenetics. 1991 Nov;1(2):102–106. doi: 10.1097/00008571-199111000-00008. [DOI] [PubMed] [Google Scholar]
- Beaty T. H., Menkes H. A., Cohen B. H., Newill C. A. Risk factors associated with longitudinal change in pulmonary function. Am Rev Respir Dis. 1984 May;129(5):660–667. doi: 10.1164/arrd.1984.129.5.660. [DOI] [PubMed] [Google Scholar]
- Bell D. A., Taylor J. A., Paulson D. F., Robertson C. N., Mohler J. L., Lucier G. W. Genetic risk and carcinogen exposure: a common inherited defect of the carcinogen-metabolism gene glutathione S-transferase M1 (GSTM1) that increases susceptibility to bladder cancer. J Natl Cancer Inst. 1993 Jul 21;85(14):1159–1164. doi: 10.1093/jnci/85.14.1159. [DOI] [PubMed] [Google Scholar]
- Black L. F., Kueppers F. alpha1-Antitrypsin deficiency in nonsmokers. Am Rev Respir Dis. 1978 Mar;117(3):421–428. doi: 10.1164/arrd.1978.117.3.421. [DOI] [PubMed] [Google Scholar]
- Buist A. S., Vollmer W. M., Wu Y., Tsai R., Johnson L. R., Hurd S., Davis C. E., Williams O. D., Li Y., Chen B. Effects of cigarette smoking on lung function in four population samples in the People's Republic of China. The PRC-US Cardiovascular and Cardiopulmonary Epidemiology Research Group. Am J Respir Crit Care Med. 1995 May;151(5):1393–1400. doi: 10.1164/ajrccm.151.5.7735591. [DOI] [PubMed] [Google Scholar]
- Cantlay A. M., Smith C. A., Wallace W. A., Yap P. L., Lamb D., Harrison D. J. Heterogeneous expression and polymorphic genotype of glutathione S-transferases in human lung. Thorax. 1994 Oct;49(10):1010–1014. doi: 10.1136/thx.49.10.1010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chen C. L., Liu Q., Relling M. V. Simultaneous characterization of glutathione S-transferase M1 and T1 polymorphisms by polymerase chain reaction in American whites and blacks. Pharmacogenetics. 1996 Apr;6(2):187–191. doi: 10.1097/00008571-199604000-00005. [DOI] [PubMed] [Google Scholar]
- Chen H., Sandler D. P., Taylor J. A., Shore D. L., Liu E., Bloomfield C. D., Bell D. A. Increased risk for myelodysplastic syndromes in individuals with glutathione transferase theta 1 (GSTT1) gene defect. Lancet. 1996 Feb 3;347(8997):295–297. doi: 10.1016/s0140-6736(96)90468-7. [DOI] [PubMed] [Google Scholar]
- Chenevix-Trench G., Young J., Coggan M., Board P. Glutathione S-transferase M1 and T1 polymorphisms: susceptibility to colon cancer and age of onset. Carcinogenesis. 1995 Jul;16(7):1655–1657. doi: 10.1093/carcin/16.7.1655. [DOI] [PubMed] [Google Scholar]
- Elexpuru-Camiruaga J., Buxton N., Kandula V., Dias P. S., Campbell D., McIntosh J., Broome J., Jones P., Inskip A., Alldersea J. Susceptibility to astrocytoma and meningioma: influence of allelism at glutathione S-transferase (GSTT1 and GSTM1) and cytochrome P-450 (CYP2D6) loci. Cancer Res. 1995 Oct 1;55(19):4237–4239. [PubMed] [Google Scholar]
- Eriksson S., Lindmark B., Lilja H. Familial alpha 1-antichymotrypsin deficiency. Acta Med Scand. 1986;220(5):447–453. [PubMed] [Google Scholar]
- Fryer A. A., Zhao L., Alldersea J., Boggild M. D., Perrett C. W., Clayton R. N., Jones P. W., Strange R. C. The glutathione S-transferases: polymerase chain reaction studies on the frequency of the GSTM1 0 genotype in patients with pituitary adenomas. Carcinogenesis. 1993 Apr;14(4):563–566. doi: 10.1093/carcin/14.4.563. [DOI] [PubMed] [Google Scholar]
- Harrison D. J., Cantlay A. M., Rae F., Lamb D., Smith C. A. Frequency of glutathione S-transferase M1 deletion in smokers with emphysema and lung cancer. Hum Exp Toxicol. 1997 Jul;16(7):356–360. doi: 10.1177/096032719701600703. [DOI] [PubMed] [Google Scholar]
- Hassett C., Aicher L., Sidhu J. S., Omiecinski C. J. Human microsomal epoxide hydrolase: genetic polymorphism and functional expression in vitro of amino acid variants. Hum Mol Genet. 1994 Mar;3(3):421–428. doi: 10.1093/hmg/3.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hirvonen A., Husgafvel-Pursiainen K., Anttila S., Vainio H. The GSTM1 null genotype as a potential risk modifier for squamous cell carcinoma of the lung. Carcinogenesis. 1993 Jul;14(7):1479–1481. doi: 10.1093/carcin/14.7.1479. [DOI] [PubMed] [Google Scholar]
- Kauffmann F., Kleisbauer J. P., Cambon-De-Mouzon A., Mercier P., Constans J., Blanc M., Rouch Y., Feingold N. Genetic markers in chronic air-flow limitation. A genetic epidemiologic study. Am Rev Respir Dis. 1983 Mar;127(3):263–269. doi: 10.1164/arrd.1983.127.3.263. [DOI] [PubMed] [Google Scholar]
- Nazar-Stewart V., Motulsky A. G., Eaton D. L., White E., Hornung S. K., Leng Z. T., Stapleton P., Weiss N. S. The glutathione S-transferase mu polymorphism as a marker for susceptibility to lung carcinoma. Cancer Res. 1993 May 15;53(10 Suppl):2313–2318. [PubMed] [Google Scholar]
- Nelson H. H., Wiencke J. K., Christiani D. C., Cheng T. J., Zuo Z. F., Schwartz B. S., Lee B. K., Spitz M. R., Wang M., Xu X. Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione S-transferase theta. Carcinogenesis. 1995 May;16(5):1243–1245. doi: 10.1093/carcin/16.5.1243. [DOI] [PubMed] [Google Scholar]
- O'Brien M. L., Buist N. R., Murphey W. H. Neonatal screening for alpha1-antitrypsin deficiency. J Pediatr. 1978 Jun;92(6):1006–1010. doi: 10.1016/s0022-3476(78)80388-6. [DOI] [PubMed] [Google Scholar]
- Pemble S., Schroeder K. R., Spencer S. R., Meyer D. J., Hallier E., Bolt H. M., Ketterer B., Taylor J. B. Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J. 1994 May 15;300(Pt 1):271–276. doi: 10.1042/bj3000271. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Seidegård J., Pero R. W., Miller D. G., Beattie E. J. A glutathione transferase in human leukocytes as a marker for the susceptibility to lung cancer. Carcinogenesis. 1986 May;7(5):751–753. doi: 10.1093/carcin/7.5.751. [DOI] [PubMed] [Google Scholar]
- Smith C. A., Harrison D. J. Association between polymorphism in gene for microsomal epoxide hydrolase and susceptibility to emphysema. Lancet. 1997 Aug 30;350(9078):630–633. doi: 10.1016/S0140-6736(96)08061-0. [DOI] [PubMed] [Google Scholar]
- Sveger T. Liver disease in alpha1-antitrypsin deficiency detected by screening of 200,000 infants. N Engl J Med. 1976 Jun 10;294(24):1316–1321. doi: 10.1056/NEJM197606102942404. [DOI] [PubMed] [Google Scholar]
- Watabe T., Kanai M., Isobe M., Ozawa N. The hepatic microsomal biotransformation of delta 5-steroids to 5 alpha, 6 beta-glycols via alpha- and beta-epoxides. J Biol Chem. 1981 Mar 25;256(6):2900–2907. [PubMed] [Google Scholar]