Skip to main content
Thorax logoLink to Thorax
. 2001 Jan;56(1):42–47. doi: 10.1136/thorax.56.1.42

Methacholine responsiveness in infants assessed with low frequency forced oscillation and forced expiration techniques

G Hall 1, Z Hantos 1, J Wildhaber 1, F Petak 1, P Sly 1
PMCID: PMC1745900  PMID: 11120903

Abstract

BACKGROUND—The contribution of the pulmonary tissues to the mechanical behaviour of the respiratory system is well recognised. This study was undertaken to detect airway and lung tissue responses to inhaled methacholine (Mch) using the low frequency forced oscillation technique (LFOT).
METHODS—The respiratory system impedance (Zrs, 0.5-20 Hz) was determined in 17 asymptomatic infants. A model containing airway resistance (Raw) and inertance (Iaw) and a constant phase tissue damping (G) and elastance (H) was fitted to Zrs data. Tissue hysteresivity (η) was calculated as η=G/H. The raised volume rapid thoracic compression technique (RVRTC) was used to generate forced expiratory volume in 0.5 seconds (FEV0.5). Lung function was determined at baseline and following inhaled Mch in doubling doses (0.25-16 mg/ml) until the maximal dose was reached or a fall of 15% in FEV0.5 was achieved (PC15FEV0.5). The response to Mch was defined in terms of the concentration of Mch provoking a change in lung function parameters of more than two standard deviation units (threshold concentration).
RESULTS—At PC15FEV0.5 a response in Raw, Iaw, G, and η, but not H, was detected (mean (SE) 61.28 (12.22)%, 95.43 (34.31)%, 46.28 (22.36)%, 44.26 (25.83)%, and -6.48 (4.94)%, respectively). No significant differences were found between threshold concentrations of LFOT parameters and FEV0.5.
CONCLUSIONS—Inhaled Mch alters both airway and respiratory tissue mechanics in infants.



Full Text

The Full Text of this article is available as a PDF (172.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ackerman V., Montogomery G., Eigen H., Tepper R. S. Assessment of airway responsiveness in infants with cystic fibrosis. Am Rev Respir Dis. 1991 Aug;144(2):344–346. doi: 10.1164/ajrccm/144.2.344. [DOI] [PubMed] [Google Scholar]
  2. Fredberg J. J., Bunk D., Ingenito E., Shore S. A. Tissue resistance and the contractile state of lung parenchyma. J Appl Physiol (1985) 1993 Mar;74(3):1387–1397. doi: 10.1152/jappl.1993.74.3.1387. [DOI] [PubMed] [Google Scholar]
  3. Fredberg J. J., Stamenovic D. On the imperfect elasticity of lung tissue. J Appl Physiol (1985) 1989 Dec;67(6):2408–2419. doi: 10.1152/jappl.1989.67.6.2408. [DOI] [PubMed] [Google Scholar]
  4. Gutkowski P. Airway responsiveness following wheezy bronchitis in infants. Eur Respir J. 1990 Jul;3(7):807–811. [PubMed] [Google Scholar]
  5. Hall G. L., Hantos Z., Peták F., Wildhaber J. H., Tiller K., Burton P. R., Sly P. D. Airway and respiratory tissue mechanics in normal infants. Am J Respir Crit Care Med. 2000 Oct;162(4 Pt 1):1397–1402. doi: 10.1164/ajrccm.162.4.9910028. [DOI] [PubMed] [Google Scholar]
  6. Hantos Z., Daróczy B., Suki B., Nagy S., Fredberg J. J. Input impedance and peripheral inhomogeneity of dog lungs. J Appl Physiol (1985) 1992 Jan;72(1):168–178. doi: 10.1152/jappl.1992.72.1.168. [DOI] [PubMed] [Google Scholar]
  7. Hayden M. J., Devadason S. G., Sly P. D., Wildhaber J. H., LeSouëf P. N. Methacholine responsiveness using the raised volume forced expiration technique in infants. Am J Respir Crit Care Med. 1997 May;155(5):1670–1675. doi: 10.1164/ajrccm.155.5.9154874. [DOI] [PubMed] [Google Scholar]
  8. Hayden M. J., Petak F., Hantos Z., Hall G., Sly P. D. Using low-frequency oscillation to detect bronchodilator responsiveness in infants. Am J Respir Crit Care Med. 1998 Feb;157(2):574–579. doi: 10.1164/ajrccm.157.2.9703089. [DOI] [PubMed] [Google Scholar]
  9. Lesouëf P. N., Geelhoed G. C., Turner D. J., Morgan S. E., Landau L. I. Response of normal infants to inhaled histamine. Am Rev Respir Dis. 1989 Jan;139(1):62–66. doi: 10.1164/ajrccm/139.1.62. [DOI] [PubMed] [Google Scholar]
  10. Lutchen K. R., Hantos Z., Peták F., Adamicza A., Suki B. Airway inhomogeneities contribute to apparent lung tissue mechanics during constriction. J Appl Physiol (1985) 1996 May;80(5):1841–1849. doi: 10.1152/jappl.1996.80.5.1841. [DOI] [PubMed] [Google Scholar]
  11. Montgomery G. L., Tepper R. S. Changes in airway reactivity with age in normal infants and young children. Am Rev Respir Dis. 1990 Dec;142(6 Pt 1):1372–1376. doi: 10.1164/ajrccm/142.6_Pt_1.1372. [DOI] [PubMed] [Google Scholar]
  12. Nagase T., Martin J. G., Ludwig M. S. Comparative study of mechanical interdependence: effect of lung volume on Raw during induced constriction. J Appl Physiol (1985) 1993 Dec;75(6):2500–2505. doi: 10.1152/jappl.1993.75.6.2500. [DOI] [PubMed] [Google Scholar]
  13. Ohrui T., Sekizawa K., Yanai M., Morikawa M., Jin Y., Sasaki H., Takishima T. Partitioning of pulmonary responses to inhaled methacholine in subjects with asymptomatic asthma. Am Rev Respir Dis. 1992 Dec;146(6):1501–1505. doi: 10.1164/ajrccm/146.6.1501. [DOI] [PubMed] [Google Scholar]
  14. Peták F., Hantos Z., Adamicza A., Asztalos T., Sly P. D. Methacholine-induced bronchoconstriction in rats: effects of intravenous vs. aerosol delivery. J Appl Physiol (1985) 1997 May;82(5):1479–1487. doi: 10.1152/jappl.1997.82.5.1479. [DOI] [PubMed] [Google Scholar]
  15. Peták F., Hayden M. J., Hantos Z., Sly P. D. Volume dependence of respiratory impedance in infants. Am J Respir Crit Care Med. 1997 Oct;156(4 Pt 1):1172–1177. doi: 10.1164/ajrccm.156.4.9701049. [DOI] [PubMed] [Google Scholar]
  16. Salerno F. G., Moretto A., Dallaire M., Ludwig M. S. How mode of stimulus affects the relative contribution of elastance and hysteresivity to changes in lung tissue resistance. J Appl Physiol (1985) 1995 Jan;78(1):282–287. doi: 10.1152/jappl.1995.78.1.282. [DOI] [PubMed] [Google Scholar]
  17. Sly P. D., Hayden M. J., Peták F., Hantos Z. Measurement of low-frequency respiratory impedance in infants. Am J Respir Crit Care Med. 1996 Jul;154(1):161–166. doi: 10.1164/ajrccm.154.1.8680673. [DOI] [PubMed] [Google Scholar]
  18. Sly P. D., Lanteri C. J. Partitioning of pulmonary responses to inhaled methacholine in puppies. J Appl Physiol (1985) 1991 Sep;71(3):886–891. doi: 10.1152/jappl.1991.71.3.886. [DOI] [PubMed] [Google Scholar]
  19. Stick S. M., Arnott J., Turner D. J., Young S., Landau L. I., Lesouëf P. N. Bronchial responsiveness and lung function in recurrently wheezy infants. Am Rev Respir Dis. 1991 Nov;144(5):1012–1015. doi: 10.1164/ajrccm/144.5.1012. [DOI] [PubMed] [Google Scholar]
  20. Tepper R. S. Airway reactivity in infants: a positive response to methacholine and metaproterenol. J Appl Physiol (1985) 1987 Mar;62(3):1155–1159. doi: 10.1152/jappl.1987.62.3.1155. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES