Skip to main content
Thorax logoLink to Thorax
. 2003 Oct;58(10):840–845. doi: 10.1136/thorax.58.10.840

Effect of bradykinin on allergen induced increase in exhaled nitric oxide in asthma

F Ricciardolo 1, M Timmers 1, J Sont 1, G Folkerts 1, P Sterk 1
PMCID: PMC1746484  PMID: 14514933

Abstract

Background: Exposure of patients with atopic asthma to allergens produces a long term increase in exhaled nitric oxide (FENO), probably reflecting inducible NO synthase (NOS) expression. In contrast, bradykinin (BK) rapidly reduces FENO. It is unknown whether BK suppresses increased FENO production after allergen exposure in asthma, and whether it modulates FENO via NOS inhibition.

Methods: Levels of FENO in response to aerosolised BK were studied before (day 3) and 48 hours after (day 10) randomised diluent (diluent/placebo/BK (Dil/P/BK)), allergen (allergen/placebo/BK (All/P/BK), and allergen/L-NMMA/BK (All/L/BK)) challenges (day 8) in 10 atopic, steroid naïve, mild asthmatic patients with dual responses to inhaled house dust mite extract. To determine whether BK modulates FENO via NOS inhibition, subjects performed pre- and post-allergen BK challenges after pretreatment with the NOS inhibitor L-NMMA in the All/L/BK period.

Results: Allergen induced a fall in FENO during the early asthmatic reaction (EAR) expressed as AUC0–1 (ANOVA, p=0.04), which was followed by a rise in FENO during the late asthmatic reaction (LAR) expressed as AUC1–48 (ANOVA, p=0.008). In the Dil/P/BK period, FENO levels after BK on pre- and post-diluent days were lower than FENO levels after placebo (difference 23.5 ppb (95% CI 6.2 to 40.9) and 22.5 ppb (95% CI 7.3 to 37.7), respectively; p<0.05). Despite the long lasting increase in FENO following allergen challenge in the LAR, BK suppressed FENO levels at 48 hours after allergen challenge in the All/P/BK period, lowering the increased FENO (difference from placebo 54.3 ppb (95% CI 23.8 to 84.8); p=0.003) to the baseline level on the pre-allergen day (p=0.51). FENO levels were lower after L-NMMA than after placebo on pre-allergen (difference 10.85 ppb (95% CI 1.3 to 20.4); p=0.03) and post-allergen (difference 36.2 ppb (95% CI 5.5 to 66.9); p=0.03) days in the All/L/BK and All/P/BK periods, respectively. L-NMMA did not significantly potentiate the pre- and post-allergen reduction in BK induced FENO.

Conclusions: Bradykinin suppresses the allergen induced increase in exhaled NO in asthma; this is not potentiated by L-NMMA. Bradykinin and L-NMMA may follow a common pathway in reducing increased NO production before and after experimental allergen exposure. Reinforcement of this endogenous protective mechanism should be considered as a therapeutic target in asthma.

Full Text

The Full Text of this article is available as a PDF (251.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adcock I. M., Brown C. R., Kwon O., Barnes P. J. Oxidative stress induces NF kappa B DNA binding and inducible NOS mRNA in human epithelial cells. Biochem Biophys Res Commun. 1994 Mar 30;199(3):1518–1524. doi: 10.1006/bbrc.1994.1403. [DOI] [PubMed] [Google Scholar]
  2. Barnes P. J., Liew F. Y. Nitric oxide and asthmatic inflammation. Immunol Today. 1995 Mar;16(3):128–130. doi: 10.1016/0167-5699(95)80128-6. [DOI] [PubMed] [Google Scholar]
  3. Cook S., Vollenweider P., Ménard B., Egli M., Nicod P., Scherrer U. Increased eNO and pulmonary iNOS expression in eNOS null mice. Eur Respir J. 2003 May;21(5):770–773. doi: 10.1183/09031936.03.00121203. [DOI] [PubMed] [Google Scholar]
  4. De Gouw H. W., Marshall-Partridge S. J., Van Der Veen H., Van Den Aardweg J. G., Hiemstra P. S., Sterk P. J. Role of nitric oxide in the airway response to exercise in healthy and asthmatic subjects. J Appl Physiol (1985) 2001 Feb;90(2):586–592. doi: 10.1152/jappl.2001.90.2.586. [DOI] [PubMed] [Google Scholar]
  5. Dweik R. A., Comhair S. A., Gaston B., Thunnissen F. B., Farver C., Thomassen M. J., Kavuru M., Hammel J., Abu-Soud H. M., Erzurum S. C. NO chemical events in the human airway during the immediate and late antigen-induced asthmatic response. Proc Natl Acad Sci U S A. 2001 Feb 20;98(5):2622–2627. doi: 10.1073/pnas.051629498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Figini M., Ricciardolo F. L., Javdan P., Nijkamp F. P., Emanueli C., Pradelles P., Folkerts G., Geppetti P. Evidence that epithelium-derived relaxing factor released by bradykinin in the guinea pig trachea is nitric oxide. Am J Respir Crit Care Med. 1996 Mar;153(3):918–923. doi: 10.1164/ajrccm.153.3.8630573. [DOI] [PubMed] [Google Scholar]
  7. Gow A. J., Stamler J. S. Reactions between nitric oxide and haemoglobin under physiological conditions. Nature. 1998 Jan 8;391(6663):169–173. doi: 10.1038/34402. [DOI] [PubMed] [Google Scholar]
  8. Gratziou C., Lignos M., Dassiou M., Roussos C. Influence of atopy on exhaled nitric oxide in patients with stable asthma and rhinitis. Eur Respir J. 1999 Oct;14(4):897–901. doi: 10.1034/j.1399-3003.1999.14d28.x. [DOI] [PubMed] [Google Scholar]
  9. Griscavage J. M., Hobbs A. J., Ignarro L. J. Negative modulation of nitric oxide synthase by nitric oxide and nitroso compounds. Adv Pharmacol. 1995;34:215–234. doi: 10.1016/s1054-3589(08)61088-1. [DOI] [PubMed] [Google Scholar]
  10. Gustafsson L. E. Exhaled nitric oxide as a marker in asthma. Eur Respir J Suppl. 1998 Mar;26:49S–52S. [PubMed] [Google Scholar]
  11. Gustafsson L. E., Leone A. M., Persson M. G., Wiklund N. P., Moncada S. Endogenous nitric oxide is present in the exhaled air of rabbits, guinea pigs and humans. Biochem Biophys Res Commun. 1991 Dec 16;181(2):852–857. doi: 10.1016/0006-291x(91)91268-h. [DOI] [PubMed] [Google Scholar]
  12. Hamid Q., Springall D. R., Riveros-Moreno V., Chanez P., Howarth P., Redington A., Bousquet J., Godard P., Holgate S., Polak J. M. Induction of nitric oxide synthase in asthma. Lancet. 1993 Dec 18;342(8886-8887):1510–1513. doi: 10.1016/s0140-6736(05)80083-2. [DOI] [PubMed] [Google Scholar]
  13. Ho L. P., Wood F. T., Robson A., Innes J. A., Greening A. P. The current single exhalation method of measuring exhales nitric oxide is affected by airway calibre. Eur Respir J. 2000 Jun;15(6):1009–1013. doi: 10.1034/j.1399-3003.2000.01506.x. [DOI] [PubMed] [Google Scholar]
  14. Hunt J. F., Fang K., Malik R., Snyder A., Malhotra N., Platts-Mills T. A., Gaston B. Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care Med. 2000 Mar;161(3 Pt 1):694–699. doi: 10.1164/ajrccm.161.3.9911005. [DOI] [PubMed] [Google Scholar]
  15. Jatakanon A., Lim S., Kharitonov S. A., Chung K. F., Barnes P. J. Correlation between exhaled nitric oxide, sputum eosinophils, and methacholine responsiveness in patients with mild asthma. Thorax. 1998 Feb;53(2):91–95. doi: 10.1136/thx.53.2.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kharitonov S. A., O'Connor B. J., Evans D. J., Barnes P. J. Allergen-induced late asthmatic reactions are associated with elevation of exhaled nitric oxide. Am J Respir Crit Care Med. 1995 Jun;151(6):1894–1899. doi: 10.1164/ajrccm.151.6.7767537. [DOI] [PubMed] [Google Scholar]
  17. Kharitonov S. A., Sapienza M. A., Barnes P. J., Chung K. F. Prostaglandins E2 and F2alpha reduce exhaled nitric oxide in normal and asthmatic subjects irrespective of airway caliber changes. Am J Respir Crit Care Med. 1998 Nov;158(5 Pt 1):1374–1378. doi: 10.1164/ajrccm.158.5.9707076. [DOI] [PubMed] [Google Scholar]
  18. Kharitonov S. A., Sapienza M. M., Chung K. F., Barnes P. J. Prostaglandins mediate bradykinin-induced reduction of exhaled nitric oxide in asthma. Eur Respir J. 1999 Nov;14(5):1023–1027. doi: 10.1183/09031936.99.14510239. [DOI] [PubMed] [Google Scholar]
  19. Kharitonov S. A., Yates D. H., Barnes P. J. Inhaled glucocorticoids decrease nitric oxide in exhaled air of asthmatic patients. Am J Respir Crit Care Med. 1996 Jan;153(1):454–457. doi: 10.1164/ajrccm.153.1.8542158. [DOI] [PubMed] [Google Scholar]
  20. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  21. Morris S. M., Jr, Billiar T. R. New insights into the regulation of inducible nitric oxide synthesis. Am J Physiol. 1994 Jun;266(6 Pt 1):E829–E839. doi: 10.1152/ajpendo.1994.266.6.E829. [DOI] [PubMed] [Google Scholar]
  22. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  23. Nijkamp F. P., Folkerts G. Nitric oxide and bronchial reactivity. Clin Exp Allergy. 1994 Oct;24(10):905–914. doi: 10.1111/j.1365-2222.1994.tb02721.x. [DOI] [PubMed] [Google Scholar]
  24. Pérez-Sala D., Cernuda-Morollón E., Díaz-Cazorla M., Rodríguez-Pascual F., Lamas S. Posttranscriptional regulation of human iNOS by the NO/cGMP pathway. Am J Physiol Renal Physiol. 2001 Mar;280(3):F466–F473. doi: 10.1152/ajprenal.2001.280.3.F466. [DOI] [PubMed] [Google Scholar]
  25. Ricciardolo F. L., Timmers M. C., Geppetti P., van Schadewijk A., Brahim J. J., Sont J. K., de Gouw H. W., Hiemstra P. S., van Krieken J. H., Sterk P. J. Allergen-induced impairment of bronchoprotective nitric oxide synthesis in asthma. J Allergy Clin Immunol. 2001 Aug;108(2):198–204. doi: 10.1067/mai.2001.116572. [DOI] [PubMed] [Google Scholar]
  26. Saleh D., Ernst P., Lim S., Barnes P. J., Giaid A. Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid. FASEB J. 1998 Aug;12(11):929–937. [PubMed] [Google Scholar]
  27. Saunders M. A., Belvisi M. G., Cirino G., Barnes P. J., Warner T. D., Mitchell J. A. Mechanisms of prostaglandin E2 release by intact cells expressing cyclooxygenase-2: evidence for a 'two-component' model. J Pharmacol Exp Ther. 1999 Mar;288(3):1101–1106. [PubMed] [Google Scholar]
  28. Silkoff P. E., Wakita S., Chatkin J., Ansarin K., Gutierrez C., Caramori M., McClean P., Slutsky A. S., Zamel N., Chapman K. R. Exhaled nitric oxide after beta2-agonist inhalation and spirometry in asthma. Am J Respir Crit Care Med. 1999 Mar;159(3):940–944. doi: 10.1164/ajrccm.159.3.9805044. [DOI] [PubMed] [Google Scholar]
  29. Sterk P. J., Fabbri L. M., Quanjer P. H., Cockcroft D. W., O'Byrne P. M., Anderson S. D., Juniper E. F., Malo J. L. Airway responsiveness. Standardized challenge testing with pharmacological, physical and sensitizing stimuli in adults. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl. 1993 Mar;16:53–83. [PubMed] [Google Scholar]
  30. Tetsuka T., Daphna-Iken D., Srivastava S. K., Baier L. D., DuMaine J., Morrison A. R. Cross-talk between cyclooxygenase and nitric oxide pathways: prostaglandin E2 negatively modulates induction of nitric oxide synthase by interleukin 1. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12168–12172. doi: 10.1073/pnas.91.25.12168. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Weersink E. J., Postma D. S., Aalbers R., de Monchy J. G. Early and late asthmatic reaction after allergen challenge. Respir Med. 1994 Feb;88(2):103–114. doi: 10.1016/0954-6111(94)90021-3. [DOI] [PubMed] [Google Scholar]
  32. Yates D. H., Kharitonov S. A., Robbins R. A., Thomas P. S., Barnes P. J. Effect of a nitric oxide synthase inhibitor and a glucocorticosteroid on exhaled nitric oxide. Am J Respir Crit Care Med. 1995 Sep;152(3):892–896. doi: 10.1164/ajrccm.152.3.7663801. [DOI] [PubMed] [Google Scholar]
  33. de Gouw H. W., Hendriks J., Woltman A. M., Twiss I. M., Sterk P. J. Exhaled nitric oxide (NO) is reduced shortly after bronchoconstriction to direct and indirect stimuli in asthma. Am J Respir Crit Care Med. 1998 Jul;158(1):315–319. doi: 10.1164/ajrccm.158.1.9703005. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES