Skip to main content
Thorax logoLink to Thorax
. 2004 Aug;59(8):694–698. doi: 10.1136/thx.2003.016949

Effects of breathing pattern and inspired air conditions on breath condensate volume, pH, nitrite, and protein concentrations

J McCafferty 1, T Bradshaw 1, S Tate 1, A Greening 1, J Innes 1
PMCID: PMC1747114  PMID: 15282391

Abstract

Background: The effects of breathing pattern and inspired air conditions on the volume and content of exhaled breath condensate (EBC) were investigated.

Methods: Total exhaled water (TEW), EBC volume, pH, nitrite and protein concentrations were measured in three groups of 10 healthy subjects breathing into a condenser at different target minute ventilations (Vm), tidal volumes (Vt), and inspired air conditions.

Results: The volumes of both TEW and EBC increased significantly with Vm. For Vm 7.5, 15 and 22.5 l/min, mean (SD) EBC was 627 (258) µl, 1019 (313) µl, and 1358 (364) µl, respectively (p<0.001) and TEW was 1879 (378) µl, 2986 (496) µl, and 4679 (700) µl, respectively (p<0.001). TEW was significantly higher than EBC, reflecting a condenser efficiency of 40% at a target Vm of 7.5 l/min which reduced to 29% at Vm 22.5 l/min. Lower Vt gave less TEW than higher Vt (26.6 v 30.7 µl/l, mean difference 4.1 (95% CI 2.6 to 5.6), p<0.001) and a smaller EBC volume (4.3 v 7.6 µl/l, mean difference 3.4 (95% CI 2.3 to 4.5), p<0.001). Cooler and drier inspired air yielded less water vapour and less breath condensate than standard conditions (p<0.05). Changes in the breathing pattern had no effect on EBC protein and nitrite concentrations and pH.

Conclusion: These results show that condensate volume can be increased by using high Vt and increased Vm without compromising the dilution of the sample.

Full Text

The Full Text of this article is available as a PDF (136.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benn Christine Stabell, Melbye Mads, Wohlfahrt Jan, Björkstén Bengt, Aaby Peter. Cohort study of sibling effect, infectious diseases, and risk of atopic dermatitis during first 18 months of life. BMJ. 2004 Apr 30;328(7450):1223–1223. doi: 10.1136/bmj.38069.512245.FE. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Corradi Massimo, Folesani Giuseppina, Andreoli Roberta, Manini Paola, Bodini Alessandro, Piacentini Giorgio, Carraro Silvia, Zanconato Stefania, Baraldi Eugenio. Aldehydes and glutathione in exhaled breath condensate of children with asthma exacerbation. Am J Respir Crit Care Med. 2002 Oct 31;167(3):395–399. doi: 10.1164/rccm.200206-507OC. [DOI] [PubMed] [Google Scholar]
  3. Dekhuijzen P. N., Aben K. K., Dekker I., Aarts L. P., Wielders P. L., van Herwaarden C. L., Bast A. Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996 Sep;154(3 Pt 1):813–816. doi: 10.1164/ajrccm.154.3.8810624. [DOI] [PubMed] [Google Scholar]
  4. Effros Richard M., Hoagland Kelly W., Bosbous Mark, Castillo Daniel, Foss Bradley, Dunning Marshall, Gare Meir, Lin Wen, Sun Feng. Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care Med. 2002 Mar 1;165(5):663–669. doi: 10.1164/ajrccm.165.5.2101018. [DOI] [PubMed] [Google Scholar]
  5. Ferrus L., Guenard H., Vardon G., Varene P. Respiratory water loss. Respir Physiol. 1980 Mar;39(3):367–381. doi: 10.1016/0034-5687(80)90067-5. [DOI] [PubMed] [Google Scholar]
  6. Gessner C., Kuhn H., Seyfarth H. J., Pankau H., Winkler J., Schauer J., Wirtz H. Factors influencing breath condensate volume. Pneumologie. 2001 Sep;55(9):414–419. doi: 10.1055/s-2001-16947. [DOI] [PubMed] [Google Scholar]
  7. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  8. Ho L. P., Innes J. A., Greening A. P. Nitrite levels in breath condensate of patients with cystic fibrosis is elevated in contrast to exhaled nitric oxide. Thorax. 1998 Aug;53(8):680–684. doi: 10.1136/thx.53.8.680. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hunt J. F., Fang K., Malik R., Snyder A., Malhotra N., Platts-Mills T. A., Gaston B. Endogenous airway acidification. Implications for asthma pathophysiology. Am J Respir Crit Care Med. 2000 Mar;161(3 Pt 1):694–699. doi: 10.1164/ajrccm.161.3.9911005. [DOI] [PubMed] [Google Scholar]
  10. Hunt J., Byrns R. E., Ignarro L. J., Gaston B. Condensed expirate nitrite as a home marker for acute asthma. Lancet. 1995 Nov 4;346(8984):1235–1236. doi: 10.1016/s0140-6736(95)92947-9. [DOI] [PubMed] [Google Scholar]
  11. Ingenito E. P., Solway J., McFadden E. R., Jr, Pichurko B. M., Cravalho E. G., Drazen J. M. Finite difference analysis of respiratory heat transfer. J Appl Physiol (1985) 1986 Dec;61(6):2252–2259. doi: 10.1152/jappl.1986.61.6.2252. [DOI] [PubMed] [Google Scholar]
  12. Jöbsis Q., Raatgeep H. C., Schellekens S. L., Kroesbergen A., Hop W. C., de Jongste J. C. Hydrogen peroxide and nitric oxide in exhaled air of children with cystic fibrosis during antibiotic treatment. Eur Respir J. 2000 Jul;16(1):95–100. doi: 10.1034/j.1399-3003.2000.16a17.x. [DOI] [PubMed] [Google Scholar]
  13. Montuschi P., Collins J. V., Ciabattoni G., Lazzeri N., Corradi M., Kharitonov S. A., Barnes P. J. Exhaled 8-isoprostane as an in vivo biomarker of lung oxidative stress in patients with COPD and healthy smokers. Am J Respir Crit Care Med. 2000 Sep;162(3 Pt 1):1175–1177. doi: 10.1164/ajrccm.162.3.2001063. [DOI] [PubMed] [Google Scholar]
  14. Montuschi P., Kharitonov S. A., Ciabattoni G., Corradi M., van Rensen L., Geddes D. M., Hodson M. E., Barnes P. J. Exhaled 8-isoprostane as a new non-invasive biomarker of oxidative stress in cystic fibrosis. Thorax. 2000 Mar;55(3):205–209. doi: 10.1136/thorax.55.3.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schleiss M. B., Holz O., Behnke M., Richter K., Magnussen H., Jörres R. A. The concentration of hydrogen peroxide in exhaled air depends on expiratory flow rate. Eur Respir J. 2000 Dec;16(6):1115–1118. doi: 10.1034/j.1399-3003.2000.16f16.x. [DOI] [PubMed] [Google Scholar]
  16. Tulic Meri K., Fiset Pierre-Olivier, Manoukian John J., Frenkiel Saul, Lavigne François, Eidelman David H., Hamid Qutayba. Role of toll-like receptor 4 in protection by bacterial lipopolysaccharide in the nasal mucosa of atopic children but not adults. Lancet. 2004 May 22;363(9422):1689–1697. doi: 10.1016/S0140-6736(04)16253-3. [DOI] [PubMed] [Google Scholar]

Articles from Thorax are provided here courtesy of BMJ Publishing Group

RESOURCES