Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Apr;65(4):1158–1164. doi: 10.1128/iai.65.4.1158-1164.1997

Peptide epitopes recognized by a human anti-cryptococcal glucuronoxylomannan antibody.

H Zhang 1, Z Zhong 1, L A Pirofski 1
PMCID: PMC175112  PMID: 9119446

Abstract

Cryptococcus neoformans causes meningitis in 6 to 8% of individuals with AIDS. Recently, immunotherapeutic modalities including antibody therapy have been proposed for the treatment of cryptococcal meningitis in AIDS patients. This is a rational approach because existing antifungal agents fail to eradicate the infection in the setting of profound immunosuppression. Both murine and human antibodies elicited by the investigational cryptococcal capsular polysaccharide vaccine glucuronoxylomannan-tetanus toxoid (GXM-TT) have been shown to be biologically functional in different model systems. The human immunoglobulin M (lambda) GXM monoclonal antibody (MAb) 2E9 expresses idiotypes that are also found in naturally occurring anti-GXM antibodies and opsonic GXM-TT sera. However, the specificity of human anti-GXM antibodies and their possible role in protection against cryptococcosis are not known. In an effort to discover epitopes that are recognized by human anti-GXM antibodies, we screened a random decapeptide phage display library with the human anti-GXM MAb 2E9. An enzyme-linked immunosorbent assay (ELISA)-based screening method led to the selection of phages with peptide inserts that bound 2E9 and inhibited 2E9-GXM binding. Analysis of the amino acid sequences of these phages revealed an increased frequency of combinations of QTGLD residues. Inhibition ELISAs demonstrated that phages with QTG/TL/D motifs inhibited 2E9-GXM binding better than phages with different motifs. A peptide synthesized from one of the inhibitory phages, peptide 13 (GMDGT QLDRW), inhibited GXM binding to solid-phase 2E9 and 2E9 binding to solid-phase GXM. Peptide 13 also inhibited the GXM binding of GXM-TT immune sera and naturally occurring serum antibodies from human immunodeficiency virus (HIV)-negative, but not HIV-positive, individuals. Taken together, our data indicate that the peptide epitopes selected by 2E9 mimic GXM epitopes and that peptide 13 may be a mimotope of a GXM epitope that is recognized by human anti-GXM antibodies.

Full Text

The Full Text of this article is available as a PDF (167.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adey N. B., Mataragnon A. H., Rider J. E., Carter J. M., Kay B. K. Characterization of phage that bind plastic from phage-displayed random peptide libraries. Gene. 1995 Apr 14;156(1):27–31. doi: 10.1016/0378-1119(95)00058-e. [DOI] [PubMed] [Google Scholar]
  2. Ahmed R., Gray D. Immunological memory and protective immunity: understanding their relation. Science. 1996 Apr 5;272(5258):54–60. doi: 10.1126/science.272.5258.54. [DOI] [PubMed] [Google Scholar]
  3. Azmi F. H., Lucas A. H., Raff H. V., Granoff D. M. Variable region sequences and idiotypic expression of a protective human immunoglobulin M antibody to capsular polysaccharides of Neisseria meningitidis group B and Escherichia coli K1. Infect Immun. 1994 May;62(5):1776–1786. doi: 10.1128/iai.62.5.1776-1786.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brummell D. A., Sharma V. P., Anand N. N., Bilous D., Dubuc G., Michniewicz J., MacKenzie C. R., Sadowska J., Sigurskjold B. W., Sinnott B. Probing the combining site of an anti-carbohydrate antibody by saturation-mutagenesis: role of the heavy-chain CDR3 residues. Biochemistry. 1993 Feb 2;32(4):1180–1187. doi: 10.1021/bi00055a024. [DOI] [PubMed] [Google Scholar]
  5. Casadevall A., DeShaw M., Fan M., Dromer F., Kozel T. R., Pirofski L. A. Molecular and idiotypic analysis of antibodies to Cryptococcus neoformans glucuronoxylomannan. Infect Immun. 1994 Sep;62(9):3864–3872. doi: 10.1128/iai.62.9.3864-3872.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Casadevall A., Scharff M. D. Return to the past: the case for antibody-based therapies in infectious diseases. Clin Infect Dis. 1995 Jul;21(1):150–161. doi: 10.1093/clinids/21.1.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cherniak R., Morris L. C., Anderson B. C., Meyer S. A. Facilitated isolation, purification, and analysis of glucuronoxylomannan of Cryptococcus neoformans. Infect Immun. 1991 Jan;59(1):59–64. doi: 10.1128/iai.59.1.59-64.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Currie B. P., Casadevall A. Estimation of the prevalence of cryptococcal infection among patients infected with the human immunodeficiency virus in New York City. Clin Infect Dis. 1994 Dec;19(6):1029–1033. doi: 10.1093/clinids/19.6.1029. [DOI] [PubMed] [Google Scholar]
  9. Cwirla S. E., Peters E. A., Barrett R. W., Dower W. J. Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6378–6382. doi: 10.1073/pnas.87.16.6378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Deshaw M., Pirofski L. A. Antibodies to the Cryptococcus neoformans capsular glucuronoxylomannan are ubiquitous in serum from HIV+ and HIV- individuals. Clin Exp Immunol. 1995 Mar;99(3):425–432. doi: 10.1111/j.1365-2249.1995.tb05568.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Devi S. J., Schneerson R., Egan W., Ulrich T. J., Bryla D., Robbins J. B., Bennett J. E. Cryptococcus neoformans serotype A glucuronoxylomannan-protein conjugate vaccines: synthesis, characterization, and immunogenicity. Infect Immun. 1991 Oct;59(10):3700–3707. doi: 10.1128/iai.59.10.3700-3707.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dromer F., Aucouturier P., Clauvel J. P., Saimot G., Yeni P. Cryptococcus neoformans antibody levels in patients with AIDS. Scand J Infect Dis. 1988;20(3):283–285. doi: 10.3109/00365548809032452. [DOI] [PubMed] [Google Scholar]
  14. Hoess R., Brinkmann U., Handel T., Pastan I. Identification of a peptide which binds to the carbohydrate-specific monoclonal antibody B3. Gene. 1993 Jun 15;128(1):43–49. doi: 10.1016/0378-1119(93)90151-r. [DOI] [PubMed] [Google Scholar]
  15. Houpt D. C., Pfrommer G. S., Young B. J., Larson T. A., Kozel T. R. Occurrences, immunoglobulin classes, and biological activities of antibodies in normal human serum that are reactive with Cryptococcus neoformans glucuronoxylomannan. Infect Immun. 1994 Jul;62(7):2857–2864. doi: 10.1128/iai.62.7.2857-2864.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Kooyman D. L., McClellan S. B., Parker W., Avissar P. L., Velardo M. A., Platt J. L., Logan J. S. Identification and characterization of a galactosyl peptide mimetic. Implications for use in removing xenoreactive anti-A Gal antibodies. Transplantation. 1996 Mar 27;61(6):851–855. doi: 10.1097/00007890-199603270-00001. [DOI] [PubMed] [Google Scholar]
  17. Lucas A. H., Granoff D. M. A major crossreactive idiotype associated with human antibodies to the Haemophilus influenzae b polysaccharide. Expression in relation to age and immunoglobulin G subclass. J Clin Invest. 1990 Apr;85(4):1158–1166. doi: 10.1172/JCI114548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Malipiero U. V., Levy N. S., Gearhart P. J. Somatic mutation in anti-phosphorylcholine antibodies. Immunol Rev. 1987 Apr;96:59–74. doi: 10.1111/j.1600-065x.1987.tb00509.x. [DOI] [PubMed] [Google Scholar]
  19. McCafferty J., Griffiths A. D., Winter G., Chiswell D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature. 1990 Dec 6;348(6301):552–554. doi: 10.1038/348552a0. [DOI] [PubMed] [Google Scholar]
  20. Mukherjee J., Casadevall A., Scharff M. D. Molecular characterization of the humoral responses to Cryptococcus neoformans infection and glucuronoxylomannan-tetanus toxoid conjugate immunization. J Exp Med. 1993 Apr 1;177(4):1105–1116. doi: 10.1084/jem.177.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mukherjee J., Pirofski L. A., Scharff M. D., Casadevall A. Antibody-mediated protection in mice with lethal intracerebral Cryptococcus neoformans infection. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3636–3640. doi: 10.1073/pnas.90.8.3636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mukherjee J., Scharff M. D., Casadevall A. Protective murine monoclonal antibodies to Cryptococcus neoformans. Infect Immun. 1992 Nov;60(11):4534–4541. doi: 10.1128/iai.60.11.4534-4541.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mukherjee S., Lee S. C., Casadevall A. Antibodies to Cryptococcus neoformans glucuronoxylomannan enhance antifungal activity of murine macrophages. Infect Immun. 1995 Feb;63(2):573–579. doi: 10.1128/iai.63.2.573-579.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Newman B. A., Kabat E. A. An immunochemical study of the combining site specificities of C57BL/6J monoclonal antibodies to alpha (1----6)-linked dextran B512. J Immunol. 1985 Aug;135(2):1220–1231. [PubMed] [Google Scholar]
  25. Oldenburg K. R., Loganathan D., Goldstein I. J., Schultz P. G., Gallop M. A. Peptide ligands for a sugar-binding protein isolated from a random peptide library. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5393–5397. doi: 10.1073/pnas.89.12.5393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Parmley S. F., Smith G. P. Antibody-selectable filamentous fd phage vectors: affinity purification of target genes. Gene. 1988 Dec 20;73(2):305–318. doi: 10.1016/0378-1119(88)90495-7. [DOI] [PubMed] [Google Scholar]
  27. Pinilla C., Chendra S., Appel J. R., Houghten R. A. Elucidation of monoclonal antibody polyspecificity using a synthetic combinatorial library. Pept Res. 1995 Sep-Oct;8(5):250–257. [PubMed] [Google Scholar]
  28. Pirofski L. A., Casadevall A. Cryptococcus neoformans: paradigm for the role of antibody immunity against fungi? Zentralbl Bakteriol. 1996 Aug;284(4):475–495. doi: 10.1016/s0934-8840(96)80001-6. [DOI] [PubMed] [Google Scholar]
  29. Pirofski L., Lui R., DeShaw M., Kressel A. B., Zhong Z. Analysis of human monoclonal antibodies elicited by vaccination with a Cryptococcus neoformans glucuronoxylomannan capsular polysaccharide vaccine. Infect Immun. 1995 Aug;63(8):3005–3014. doi: 10.1128/iai.63.8.3005-3014.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Scott J. K., Loganathan D., Easley R. B., Gong X., Goldstein I. J. A family of concanavalin A-binding peptides from a hexapeptide epitope library. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5398–5402. doi: 10.1073/pnas.89.12.5398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sikder S. K., Akolkar P. N., Kaladas P. M., Morrison S. L., Kabat E. A. Sequences of variable regions of hybridoma antibodies to alpha (1----6) dextran in BALB/c and C57BL/6 mice. J Immunol. 1985 Dec;135(6):4215–4221. [PubMed] [Google Scholar]
  32. Sioud M., Dybwad A., Jespersen L., Suleyman S., Natvig J. B., Førre O. Characterization of naturally occurring autoantibodies against tumour necrosis factor-alpha (TNF-alpha): in vitro function and precise epitope mapping by phage epitope library. Clin Exp Immunol. 1994 Dec;98(3):520–525. doi: 10.1111/j.1365-2249.1994.tb05522.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sundstrom J. B., Cherniak R. The glucuronoxylomannan of Cryptococcus neoformans serotype A is a type 2 T-cell-independent antigen. Infect Immun. 1992 Oct;60(10):4080–4087. doi: 10.1128/iai.60.10.4080-4087.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Valadon P., Nussbaum G., Boyd L. F., Margulies D. H., Scharff M. D. Peptide libraries define the fine specificity of anti-polysaccharide antibodies to Cryptococcus neoformans. J Mol Biol. 1996 Aug 9;261(1):11–22. doi: 10.1006/jmbi.1996.0438. [DOI] [PubMed] [Google Scholar]
  35. Westerink M. A., Giardina P. C., Apicella M. A., Kieber-Emmons T. Peptide mimicry of the meningococcal group C capsular polysaccharide. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):4021–4025. doi: 10.1073/pnas.92.9.4021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Wilson I. A., Stanfield R. L. A Trojan horse with a sweet tooth. Nat Struct Biol. 1995 Jun;2(6):433–436. doi: 10.1038/nsb0695-433. [DOI] [PubMed] [Google Scholar]
  37. Zhong Z., Pirofski L. A. Opsonization of Cryptococcus neoformans by human anticryptococcal glucuronoxylomannan antibodies. Infect Immun. 1996 Sep;64(9):3446–3450. doi: 10.1128/iai.64.9.3446-3450.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES