Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2003 Feb;62(2):100–107. doi: 10.1136/ard.62.2.100

Angiopoietin-1 is expressed in the synovium of patients with rheumatoid arthritis and is induced by tumour necrosis factor α

E Gravallese 1, A Pettit 1, R Lee 1, R Madore 1, C Manning 1, A Tsay 1, J Gaspar 1, M Goldring 1, S Goldring 1, P Oettgen 1
PMCID: PMC1754433  PMID: 12525377

Abstract

Objectives: To examine the potential role of the angiogenic growth factor angiopoietin-1 (Ang-1) in inflammatory arthritis.

Methods: Eighteen synovial tissue samples were obtained from 17 patients with a clinical diagnosis of rheumatoid arthritis (RA) and compared with six synovial tissue samples from six patients with osteoarthritis (OA). Ang-1 expression in synovial tissues was determined by immunohistochemistry and in situ hybridisation. Ang-1 mRNA and protein expression were also examined by northern blot analysis and enzyme linked immunosorbent assay (ELISA) in cultured synovial fibroblasts and human umbilical vein endothelial cells (HUVECs) before and after treatment with tumour necrosis factor (TNF)α.

Results: Ang-1 protein expression was detected by immunohistochemistry in 16/18 RA synovial tissue samples. Ang-1 protein was frequently observed in the synovial lining layer and in cells within the sublining synovial tissue, in both perivascular areas and in areas remote from vessels. In contrast, Ang-1 was only weakly detected in these sites in OA samples. Ang-1 mRNA and protein were also expressed in cultured synovial fibroblasts derived from patients with RA. In addition, induction of Ang-1 mRNA and protein was observed by northern blot analysis and ELISA after stimulation of RA synovial fibroblasts, but not HUVECs, with the proinflammatory cytokine TNFα.

Conclusions: Ang-1 mRNA and protein are expressed in the synovium of patients with RA, and are up regulated in synovial fibroblasts by TNFα. Ang-1 may therefore be an important regulator of angiogenesis in inflammatory arthritis.

Full Text

The Full Text of this article is available as a PDF (270.7 KB).

Figure 1.

Figure 1

Immunohistochemical staining of Ang-1 in RA and OA synovial tissue. (A) Ang-1 protein is demonstrated in RA synovial tissue in cells in the synovial lining layer, in some endothelial cells, and in cells within subsynovial tissue. (B) Isotype matched control antibody staining, serial section. (C) Cells in perivascular areas of RA synovial tissue expressing Ang-1 protein. (D) Cells in RA subsynovial tissues expressing Ang-1 protein. (E and F) Weak Ang-1 expression was seen in OA synovial tissue samples in the lining layer, and occasionally in cells within subsynovial tissues. (G and H) Serial sections of RA synovial tissue stained for CD68 (G) and Ang-1 (H). (I) Isotype matched control antibody staining for CD68 in a serial section (magnification x150). Original magnification in (A)–(F) is x50 and in (G) and H x150.

Figure 2.

Figure 2

In situ hybridisation for Ang-1 and Ang-2 in rheumatoid synovium. Ang-1 in situ hybridisation in synovial tissue samples from patients with RA using the Ang-1 antisense (A, C–F) and sense (B) probes, demonstrating representative areas of mRNA expression for Ang-1. Probe hybridisation is noted in isolated cells within the subsynovial tissues (A), and within cells in the wall of a subsynovial arteriole (C, arrow), shown at higher magnification (D). (E and F) Low and high power views of Ang-1 hybridisation within cells of the synovial lining layer seen in two samples. In situ hybridisation using the Ang-2 antisense probe demonstrating probe hybridisation within a subsynovial vessel at low (G, arrow) and high power magnification (H). Original magnification in (A), (B), and (E–G) is x50 and in (C), (D), and (H) x150.

Figure 3.

Figure 3

Northern blot analysis of Ang-1 and Ang-2 in cultured synovial fibroblasts and human umbilical endothelial cells. (A) Induction of Ang-1 mRNA expression in cultured human synovial fibroblasts in response to TNFα (10 ng/ml) at baseline (lane 1) and 1, 2, 4, 6, 12, and 24 hours after stimulation with TNFα (lanes 2–7). (B) Repression of Ang-1 mRNA expression in cultured human umbilical vein endothelial cells in response to IL1ß (10 ng/ml) and TNFα (10 ng/ml) at baseline (lanes 1, 6) and 2, 4, 6, and 24 hours after stimulation with IL1ß (lanes 2–5) and TNFα (lanes 7–10). (C) Repression of Ang-2 mRNA expression in cultured human umbilical vein endothelial cells in response to IL1ß (10 ng/ml) and TNFα (10 ng/ml) at baseline (lanes 1, 6) and 2, 4, 6, and 24 hours after stimulation with IL1ß (lanes 2–5) and TNFα (lanes 7–10).

Figure 4.

Figure 4

ELISA analysis of Ang-1 protein in culture media of RA synovial fibroblasts. Ang-1 protein was quantified in the culture media of synovial fibroblasts stimulated with TNFα (10 ng/ml) at 0, 4, 18, 24, and 30 hours in this representative experiment. Experiments were performed in triplicate and are expressed as means (standard deviation).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chu C. Q., Field M., Abney E., Zheng R. Q., Allard S., Feldmann M., Maini R. N. Transforming growth factor-beta 1 in rheumatoid synovial membrane and cartilage/pannus junction. Clin Exp Immunol. 1991 Dec;86(3):380–386. doi: 10.1111/j.1365-2249.1991.tb02941.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cleland L. G. Animal models of rheumatoid arthritis. Br J Rheumatol. 1996 Nov;35(11):1041–1042. doi: 10.1093/rheumatology/35.11.1041. [DOI] [PubMed] [Google Scholar]
  3. Fava R. A., Olsen N. J., Spencer-Green G., Yeo K. T., Yeo T. K., Berse B., Jackman R. W., Senger D. R., Dvorak H. F., Brown L. F. Vascular permeability factor/endothelial growth factor (VPF/VEGF): accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J Exp Med. 1994 Jul 1;180(1):341–346. doi: 10.1084/jem.180.1.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FitzGerald O., Soden M., Yanni G., Robinson R., Bresnihan B. Morphometric analysis of blood vessels in synovial membranes obtained from clinically affected and unaffected knee joints of patients with rheumatoid arthritis. Ann Rheum Dis. 1991 Nov;50(11):792–796. doi: 10.1136/ard.50.11.792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fujikawa K., de Aos Scherpenseel I., Jain S. K., Presman E., Christensen R. A., Varticovski L. Role of PI 3-kinase in angiopoietin-1-mediated migration and attachment-dependent survival of endothelial cells. Exp Cell Res. 1999 Dec 15;253(2):663–672. doi: 10.1006/excr.1999.4693. [DOI] [PubMed] [Google Scholar]
  6. Giatromanolaki A., Sivridis E., Brekken R., Thorpe P. E., Anastasiadis P., Gatter K. C., Harris A. L., Koukourakis M. I., Tumour and Angiogenesis Research Group The angiogenic "vascular endothelial growth factor/flk-1(KDR) receptor" pathway in patients with endometrial carcinoma: prognostic and therapeutic implications. Cancer. 2001 Nov 15;92(10):2569–2577. doi: 10.1002/1097-0142(20011115)92:10<2569::aid-cncr1609>3.0.co;2-3. [DOI] [PubMed] [Google Scholar]
  7. Goddard D. H., Grossman S. L., Williams W. V., Weiner D. B., Gross J. L., Eidsvoog K., Dasch J. R. Regulation of synovial cell growth. Coexpression of transforming growth factor beta and basic fibroblast growth factor by cultured synovial cells. Arthritis Rheum. 1992 Nov;35(11):1296–1303. doi: 10.1002/art.1780351109. [DOI] [PubMed] [Google Scholar]
  8. Gravallese E. M., Harada Y., Wang J. T., Gorn A. H., Thornhill T. S., Goldring S. R. Identification of cell types responsible for bone resorption in rheumatoid arthritis and juvenile rheumatoid arthritis. Am J Pathol. 1998 Apr;152(4):943–951. [PMC free article] [PubMed] [Google Scholar]
  9. Gravallese E. M., Manning C., Tsay A., Naito A., Pan C., Amento E., Goldring S. R. Synovial tissue in rheumatoid arthritis is a source of osteoclast differentiation factor. Arthritis Rheum. 2000 Feb;43(2):250–258. doi: 10.1002/1529-0131(200002)43:2<250::AID-ANR3>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  10. Huang X. L., Takakura N., Suda T. In vitro effects of angiopoietins and VEGF on hematopoietic and endothelial cells. Biochem Biophys Res Commun. 1999 Oct 14;264(1):133–138. doi: 10.1006/bbrc.1999.1472. [DOI] [PubMed] [Google Scholar]
  11. Jackson J. R., Seed M. P., Kircher C. H., Willoughby D. A., Winkler J. D. The codependence of angiogenesis and chronic inflammation. FASEB J. 1997 May;11(6):457–465. [PubMed] [Google Scholar]
  12. Koch A. E., Halloran M. M., Hosaka S., Shah M. R., Haskell C. J., Baker S. K., Panos R. J., Haines G. K., Bennett G. L., Pope R. M. Hepatocyte growth factor. A cytokine mediating endothelial migration in inflammatory arthritis. Arthritis Rheum. 1996 Sep;39(9):1566–1575. doi: 10.1002/art.1780390917. [DOI] [PubMed] [Google Scholar]
  13. Koch A. E. Review: angiogenesis: implications for rheumatoid arthritis. Arthritis Rheum. 1998 Jun;41(6):951–962. doi: 10.1002/1529-0131(199806)41:6<951::AID-ART2>3.0.CO;2-D. [DOI] [PubMed] [Google Scholar]
  14. Maisonpierre P. C., Suri C., Jones P. F., Bartunkova S., Wiegand S. J., Radziejewski C., Compton D., McClain J., Aldrich T. H., Papadopoulos N. Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science. 1997 Jul 4;277(5322):55–60. doi: 10.1126/science.277.5322.55. [DOI] [PubMed] [Google Scholar]
  15. Miotla J., Maciewicz R., Kendrew J., Feldmann M., Paleolog E. Treatment with soluble VEGF receptor reduces disease severity in murine collagen-induced arthritis. Lab Invest. 2000 Aug;80(8):1195–1205. doi: 10.1038/labinvest.3780127. [DOI] [PubMed] [Google Scholar]
  16. Nagashima M., Hasegawa J., Kato K., Yamazaki J., Nishigai K., Ishiwata T., Asano G., Yoshino S. Hepatocyte growth factor (HGF), HGF activator, and c-Met in synovial tissues in rheumatoid arthritis and osteoarthritis. J Rheumatol. 2001 Aug;28(8):1772–1778. [PubMed] [Google Scholar]
  17. Pando J. A., Duray P., Yarboro C., Gourley M. F., Klippel J. H., Schumacher H. R. Synovitis occurs in some clinically normal and asymptomatic joints in patients with early arthritis. J Rheumatol. 2000 Aug;27(8):1848–1854. [PubMed] [Google Scholar]
  18. Peacock D. J., Banquerigo M. L., Brahn E. Angiogenesis inhibition suppresses collagen arthritis. J Exp Med. 1992 Apr 1;175(4):1135–1138. doi: 10.1084/jem.175.4.1135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pufe T., Petersen W., Tillmann B., Mentlein R. The splice variants VEGF121 and VEGF189 of the angiogenic peptide vascular endothelial growth factor are expressed in osteoarthritic cartilage. Arthritis Rheum. 2001 May;44(5):1082–1088. doi: 10.1002/1529-0131(200105)44:5<1082::AID-ANR188>3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  20. Qu Z., Huang X. N., Ahmadi P., Andresevic J., Planck S. R., Hart C. E., Rosenbaum J. T. Expression of basic fibroblast growth factor in synovial tissue from patients with rheumatoid arthritis and degenerative joint disease. Lab Invest. 1995 Sep;73(3):339–346. [PubMed] [Google Scholar]
  21. Scott Boyd B., Zaratin Paola F., Colombo Antonio, Hansbury Michael J., Winkler James D., Jackson Jeffrey R. Constitutive expression of angiopoietin-1 and -2 and modulation of their expression by inflammatory cytokines in rheumatoid arthritis synovial fibroblasts. J Rheumatol. 2002 Feb;29(2):230–239. [PubMed] [Google Scholar]
  22. Shahrara Shiva, Volin Michael V., Connors Matthew A., Haines G. Kenneth, Koch Alisa E. Differential expression of the angiogenic Tie receptor family in arthritic and normal synovial tissue. Arthritis Res. 2002 Jan 16;4(3):201–208. doi: 10.1186/ar407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stevens C. R., Blake D. R., Merry P., Revell P. A., Levick J. R. A comparative study by morphometry of the microvasculature in normal and rheumatoid synovium. Arthritis Rheum. 1991 Dec;34(12):1508–1513. doi: 10.1002/art.1780341206. [DOI] [PubMed] [Google Scholar]
  24. Storgard C. M., Stupack D. G., Jonczyk A., Goodman S. L., Fox R. I., Cheresh D. A. Decreased angiogenesis and arthritic disease in rabbits treated with an alphavbeta3 antagonist. J Clin Invest. 1999 Jan;103(1):47–54. doi: 10.1172/JCI3756. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Suri C., Jones P. F., Patan S., Bartunkova S., Maisonpierre P. C., Davis S., Sato T. N., Yancopoulos G. D. Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell. 1996 Dec 27;87(7):1171–1180. doi: 10.1016/s0092-8674(00)81813-9. [DOI] [PubMed] [Google Scholar]
  26. Suri C., McClain J., Thurston G., McDonald D. M., Zhou H., Oldmixon E. H., Sato T. N., Yancopoulos G. D. Increased vascularization in mice overexpressing angiopoietin-1. Science. 1998 Oct 16;282(5388):468–471. doi: 10.1126/science.282.5388.468. [DOI] [PubMed] [Google Scholar]
  27. Tsai C., Diaz L. A., Jr, Singer N. G., Li L. L., Kirsch A. H., Mitra R., Nickoloff B. J., Crofford L. J., Fox D. A. Responsiveness of human T lymphocytes to bacterial superantigens presented by cultured rheumatoid arthritis synoviocytes. Arthritis Rheum. 1996 Jan;39(1):125–136. doi: 10.1002/art.1780390117. [DOI] [PubMed] [Google Scholar]
  28. Unemori E. N., Hibbs M. S., Amento E. P. Constitutive expression of a 92-kD gelatinase (type V collagenase) by rheumatoid synovial fibroblasts and its induction in normal human fibroblasts by inflammatory cytokines. J Clin Invest. 1991 Nov;88(5):1656–1662. doi: 10.1172/JCI115480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Walsh D. A. Angiogenesis and arthritis. Rheumatology (Oxford) 1999 Feb;38(2):103–112. doi: 10.1093/rheumatology/38.2.103. [DOI] [PubMed] [Google Scholar]
  30. Walsh D. A., Wade M., Mapp P. I., Blake D. R. Focally regulated endothelial proliferation and cell death in human synovium. Am J Pathol. 1998 Mar;152(3):691–702. [PMC free article] [PubMed] [Google Scholar]
  31. Witzenbichler B., Maisonpierre P. C., Jones P., Yancopoulos G. D., Isner J. M. Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. J Biol Chem. 1998 Jul 17;273(29):18514–18521. doi: 10.1074/jbc.273.29.18514. [DOI] [PubMed] [Google Scholar]
  32. Zimmermann T., Kunisch E., Pfeiffer R., Hirth A., Stahl H. D., Sack U., Laube A., Liesaus E., Roth A., Palombo-Kinne E. Isolation and characterization of rheumatoid arthritis synovial fibroblasts from primary culture--primary culture cells markedly differ from fourth-passage cells. Arthritis Res. 2000 Nov 21;3(1):72–76. doi: 10.1186/ar142. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES