Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2003 Jun;62(6):501–509. doi: 10.1136/ard.62.6.501

Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs

J Martel-Pelletier 1, D Lajeunesse 1, P Reboul 1, J Pelletier 1
PMCID: PMC1754580  PMID: 12759283

Full Text

The Full Text of this article is available as a PDF (237.9 KB).

Figure 1.

Figure 1

Products and enzymes of arachidonic acid metabolism involved in the inflammatory process.

Figure 2.

Figure 2

Products and enzymes of the 5-LOX pathway.

Figure 3.

Figure 3

Products and enzymes of the LX pathway.

Figure 4.

Figure 4

Inhibition of the different classes of anti-inflammatory drugs.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Attiga F. A., Fernandez P. M., Weeraratna A. T., Manyak M. J., Patierno S. R. Inhibitors of prostaglandin synthesis inhibit human prostate tumor cell invasiveness and reduce the release of matrix metalloproteinases. Cancer Res. 2000 Aug 15;60(16):4629–4637. [PubMed] [Google Scholar]
  2. Belvisi M. G., Saunders M., Yacoub M., Mitchell J. A. Expression of cyclo-oxygenase-2 in human airway smooth muscle is associated with profound reductions in cell growth. Br J Pharmacol. 1998 Nov;125(5):1102–1108. doi: 10.1038/sj.bjp.0702104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boileau Christelle, Martel-Pelletier Johanne, Jouzeau Jean-Yves, Netter Patrick, Moldovan Florina, Laufer Stefan, Tries Susanne, Pelletier Jean-Pierre. Licofelone (ML-3000), a dual inhibitor of 5-lipoxygenase and cyclooxygenase, reduces the level of cartilage chondrocyte death in vivo in experimental dog osteoarthritis: inhibition of pro-apoptotic factors. J Rheumatol. 2002 Jul;29(7):1446–1453. [PubMed] [Google Scholar]
  4. Bray M. A., Ford-Hutchinson A. W., Smith M. J. Leukotriene B4: an inflammatory mediator in vivo. Prostaglandins. 1981 Aug;22(2):213–222. doi: 10.1016/0090-6980(81)90036-8. [DOI] [PubMed] [Google Scholar]
  5. Breyer M. D., Harris R. C. Cyclooxygenase 2 and the kidney. Curr Opin Nephrol Hypertens. 2001 Jan;10(1):89–98. doi: 10.1097/00041552-200101000-00014. [DOI] [PubMed] [Google Scholar]
  6. Buccellati C., Rossoni G., Bonazzi A., Berti F., Maclouf J., Folco G., Sala A. Nitric oxide modulation of transcellular biosynthesis of cys-leukotrienes in rabbit leukocyte-perfused heart. Br J Pharmacol. 1997 Mar;120(6):1128–1134. doi: 10.1038/sj.bjp.0700994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Casado M., Callejas N. A., Rodrigo J., Zhao X., Dey S. K., Boscá L., Martín-Sanz P. Contribution of cyclooxygenase 2 to liver regeneration after partial hepatectomy. FASEB J. 2001 Jul 9;15(11):2016–2018. doi: 10.1096/fj.01-0158fje. [DOI] [PubMed] [Google Scholar]
  8. Clish C. B., O'Brien J. A., Gronert K., Stahl G. L., Petasis N. A., Serhan C. N. Local and systemic delivery of a stable aspirin-triggered lipoxin prevents neutrophil recruitment in vivo. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8247–8252. doi: 10.1073/pnas.96.14.8247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Collawn C., Rubin P., Perez N., Bobadilla J., Cabrera G., Reyes E., Borovoy J., Kershenobich D. Phase II study of the safety and efficacy of a 5-lipoxygenase inhibitor in patients with ulcerative colitis. Am J Gastroenterol. 1992 Mar;87(3):342–346. [PubMed] [Google Scholar]
  10. Crofford L. J., Oates J. C., McCune W. J., Gupta S., Kaplan M. J., Catella-Lawson F., Morrow J. D., McDonagh K. T., Schmaier A. H. Thrombosis in patients with connective tissue diseases treated with specific cyclooxygenase 2 inhibitors. A report of four cases. Arthritis Rheum. 2000 Aug;43(8):1891–1896. doi: 10.1002/1529-0131(200008)43:8<1891::AID-ANR28>3.0.CO;2-R. [DOI] [PubMed] [Google Scholar]
  11. Davis B. J., Lennard D. E., Lee C. A., Tiano H. F., Morham S. G., Wetsel W. C., Langenbach R. Anovulation in cyclooxygenase-2-deficient mice is restored by prostaglandin E2 and interleukin-1beta. Endocrinology. 1999 Jun;140(6):2685–2695. doi: 10.1210/endo.140.6.6715. [DOI] [PubMed] [Google Scholar]
  12. Depré M., Van Hecken A., Verbesselt R., Verpooten G. A., Arnout J., Brunner F., Jurgens A., Pousset V., Chow A., Baldauf C. Biochemical activity, pharmacokinetics and tolerability of tepoxalin, a cyclooxygenase/5-lipoxygenase inhibitor, in man. Int J Clin Pharmacol Res. 1996;16(1):1–8. [PubMed] [Google Scholar]
  13. Dixon R. A., Diehl R. E., Opas E., Rands E., Vickers P. J., Evans J. F., Gillard J. W., Miller D. K. Requirement of a 5-lipoxygenase-activating protein for leukotriene synthesis. Nature. 1990 Jan 18;343(6255):282–284. doi: 10.1038/343282a0. [DOI] [PubMed] [Google Scholar]
  14. Domoki F., Perciaccante J. V., Puskar M., Bari F., Busija D. W. Cyclooxygenase-2 inhibitor NS398 preserves neuronal function after hypoxia/ischemia in piglets. Neuroreport. 2001 Dec 21;12(18):4065–4068. doi: 10.1097/00001756-200112210-00041. [DOI] [PubMed] [Google Scholar]
  15. Fiorucci S., Meli R., Bucci M., Cirino G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? Biochem Pharmacol. 2001 Dec 1;62(11):1433–1438. doi: 10.1016/s0006-2952(01)00747-x. [DOI] [PubMed] [Google Scholar]
  16. FitzGerald G. A., Austin S., Egan K., Cheng Y., Pratico D. Cyclo-oxygenase products and atherothrombosis. Ann Med. 2000 Dec;32 (Suppl 1):21–26. [PubMed] [Google Scholar]
  17. FitzGerald G. A., Patrono C. The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med. 2001 Aug 9;345(6):433–442. doi: 10.1056/NEJM200108093450607. [DOI] [PubMed] [Google Scholar]
  18. Ford-Hutchinson A. W., Bray M. A., Doig M. V., Shipley M. E., Smith M. J. Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature. 1980 Jul 17;286(5770):264–265. doi: 10.1038/286264a0. [DOI] [PubMed] [Google Scholar]
  19. Fu J. Y., Masferrer J. L., Seibert K., Raz A., Needleman P. The induction and suppression of prostaglandin H2 synthase (cyclooxygenase) in human monocytes. J Biol Chem. 1990 Oct 5;265(28):16737–16740. [PubMed] [Google Scholar]
  20. Furst D. E. Pharmacology and efficacy of cyclooxygenase (COX) inhibitors. Am J Med. 1999 Dec 13;107(6A):18S–26S. doi: 10.1016/s0002-9343(99)00364-2. [DOI] [PubMed] [Google Scholar]
  21. Gay R. E., Neidhart M., Pataky F., Tries S., Laufer S., Gay S. Dual inhibition of 5-lipoxygenase and cyclooxygenases 1 and 2 by ML3000 reduces joint destruction in adjuvant arthritis. J Rheumatol. 2001 Sep;28(9):2060–2065. [PubMed] [Google Scholar]
  22. Gilroy D. W., Colville-Nash P. R., Willis D., Chivers J., Paul-Clark M. J., Willoughby D. A. Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med. 1999 Jun;5(6):698–701. doi: 10.1038/9550. [DOI] [PubMed] [Google Scholar]
  23. Gronert K., Gewirtz A., Madara J. L., Serhan C. N. Identification of a human enterocyte lipoxin A4 receptor that is regulated by interleukin (IL)-13 and interferon gamma and inhibits tumor necrosis factor alpha-induced IL-8 release. J Exp Med. 1998 Apr 20;187(8):1285–1294. doi: 10.1084/jem.187.8.1285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hassan B. S., Doherty S. A., Mockett S., Doherty M. Effect of pain reduction on postural sway, proprioception, and quadriceps strength in subjects with knee osteoarthritis. Ann Rheum Dis. 2002 May;61(5):422–428. doi: 10.1136/ard.61.5.422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Hawkey C. J., Dube L. M., Rountree L. V., Linnen P. J., Lancaster J. F. A trial of zileuton versus mesalazine or placebo in the maintenance of remission of ulcerative colitis. The European Zileuton Study Group For Ulcerative Colitis. Gastroenterology. 1997 Mar;112(3):718–724. doi: 10.1053/gast.1997.v112.pm9041232. [DOI] [PubMed] [Google Scholar]
  26. He Wendy, Pelletier Jean-Pierre, Martel-Pelletier Johanne, Laufer Stefan, Di Battista John A. Synthesis of interleukin 1beta, tumor necrosis factor-alpha, and interstitial collagenase (MMP-1) is eicosanoid dependent in human osteoarthritis synovial membrane explants: interactions with antiinflammatory cytokines. J Rheumatol. 2002 Mar;29(3):546–553. [PubMed] [Google Scholar]
  27. Higgs G. A., Mugridge K. G., Moncada S., Vane J. R. Inhibition of tissue damage by the arachidonate lipoxygenase inhibitor BW755C. Proc Natl Acad Sci U S A. 1984 May;81(9):2890–2892. doi: 10.1073/pnas.81.9.2890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Horizoe T., Nagakura N., Chiba K., Shirota H., Shinoda M., Numata H., Kobayashi S., Abe C. Effects of ER-34122, a novel dual 5-lipoxygenase/cyclooxygenase inhibitor, on indices of early articular lesion in MRL/MpJ-lpr/lpr mice. Inflamm Res. 1999 Aug;48(8):432–436. doi: 10.1007/s000110050483. [DOI] [PubMed] [Google Scholar]
  29. Hudson N., Balsitis M., Everitt S., Hawkey C. J. Enhanced gastric mucosal leukotriene B4 synthesis in patients taking non-steroidal anti-inflammatory drugs. Gut. 1993 Jun;34(6):742–747. doi: 10.1136/gut.34.6.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Jouzeau J. Y., Terlain B., Abid A., Nédélec E., Netter P. Cyclo-oxygenase isoenzymes. How recent findings affect thinking about nonsteroidal anti-inflammatory drugs. Drugs. 1997 Apr;53(4):563–582. doi: 10.2165/00003495-199753040-00003. [DOI] [PubMed] [Google Scholar]
  31. Jovanovic D. V., Fernandes J. C., Martel-Pelletier J., Jolicoeur F. C., Reboul P., Laufer S., Tries S., Pelletier J. P. In vivo dual inhibition of cyclooxygenase and lipoxygenase by ML-3000 reduces the progression of experimental osteoarthritis: suppression of collagenase 1 and interleukin-1beta synthesis. Arthritis Rheum. 2001 Oct;44(10):2320–2330. doi: 10.1002/1529-0131(200110)44:10<2320::aid-art394>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  32. Katori M., Majima M. Cyclooxygenase-2: its rich diversity of roles and possible application of its selective inhibitors. Inflamm Res. 2000 Aug;49(8):367–392. doi: 10.1007/s000110050605. [DOI] [PubMed] [Google Scholar]
  33. Kawai S. Cyclooxygenase selectivity and the risk of gastro-intestinal complications of various non-steroidal anti-inflammatory drugs: a clinical consideration. Inflamm Res. 1998 Oct;47 (Suppl 2):S102–S106. doi: 10.1007/s000110050291. [DOI] [PubMed] [Google Scholar]
  34. Kirchner T., Aparicio B., Argentieri D. C., Lau C. Y., Ritchie D. M. Effects of tepoxalin, a dual inhibitor of cyclooxygenase/5-lipoxygenase, on events associated with NSAID-induced gastrointestinal inflammation. Prostaglandins Leukot Essent Fatty Acids. 1997 Jun;56(6):417–423. doi: 10.1016/s0952-3278(97)90593-7. [DOI] [PubMed] [Google Scholar]
  35. Knapp H. R. Reduced allergen-induced nasal congestion and leukotriene synthesis with an orally active 5-lipoxygenase inhibitor. N Engl J Med. 1990 Dec 20;323(25):1745–1748. doi: 10.1056/NEJM199012203232506. [DOI] [PubMed] [Google Scholar]
  36. Knight E. V., Kimball J. P., Keenan C. M., Smith I. L., Wong F. A., Barrett D. S., Dempster A. M., Lieuallen W. G., Panigrahi D., Powers W. J. Preclinical toxicity evaluation of tepoxalin, a dual inhibitor of cyclooxygenase and 5-lipoxygenase, in Sprague-Dawley rats and beagle dogs. Fundam Appl Toxicol. 1996 Sep;33(1):38–48. doi: 10.1006/faat.1996.0141. [DOI] [PubMed] [Google Scholar]
  37. Kömhoff M., Wang J. L., Cheng H. F., Langenbach R., McKanna J. A., Harris R. C., Breyer M. D. Cyclooxygenase-2-selective inhibitors impair glomerulogenesis and renal cortical development. Kidney Int. 2000 Feb;57(2):414–422. doi: 10.1046/j.1523-1755.2000.00861.x. [DOI] [PubMed] [Google Scholar]
  38. Langenbach R., Morham S. G., Tiano H. F., Loftin C. D., Ghanayem B. I., Chulada P. C., Mahler J. F., Lee C. A., Goulding E. H., Kluckman K. D. Prostaglandin synthase 1 gene disruption in mice reduces arachidonic acid-induced inflammation and indomethacin-induced gastric ulceration. Cell. 1995 Nov 3;83(3):483–492. doi: 10.1016/0092-8674(95)90126-4. [DOI] [PubMed] [Google Scholar]
  39. Laufer S., Tries S., Augustin J., Dannhardt G. Pharmacological profile of a new pyrrolizine derivative inhibiting the enzymes cyclo-oxygenase and 5-lipoxygenase. Arzneimittelforschung. 1994 May;44(5):629–636. [PubMed] [Google Scholar]
  40. Laufer S., Tries S., Augustin J., Elsässer R., Albrecht W., Guserle R., Algate D. R., Atterson P. R., Munt P. L. Acute and chronic anti-inflammatory properties of [2,2-dimethyl-6-(4- chlorophenyl)-7-phenyl-2,3-dihydro-1H-pyrrolizine-5-yl]-acetic acid. Arzneimittelforschung. 1995 Jan;45(1):27–32. [PubMed] [Google Scholar]
  41. Laufer S., Tries S., Augustin J., Elsässer R., Algate D. R., Atterson P. R., Munt P. L. Gastrointestinal tolerance of [2,2-dimethyl-6-(4-chlorophenyl-7-phenyl- 2,3-dihydro-1H-pyrrolizine-5-yl]-acetic acid in the rat. Arzneimittelforschung. 1994 Dec;44(12):1329–1333. [PubMed] [Google Scholar]
  42. Levy B. D., Clish C. B., Schmidt B., Gronert K., Serhan C. N. Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol. 2001 Jul;2(7):612–619. doi: 10.1038/89759. [DOI] [PubMed] [Google Scholar]
  43. Li J., Burr D. B., Turner C. H. Suppression of prostaglandin synthesis with NS-398 has different effects on endocortical and periosteal bone formation induced by mechanical loading. Calcif Tissue Int. 2002 Mar 26;70(4):320–329. doi: 10.1007/s00223-001-1025-y. [DOI] [PubMed] [Google Scholar]
  44. Lim H., Paria B. C., Das S. K., Dinchuk J. E., Langenbach R., Trzaskos J. M., Dey S. K. Multiple female reproductive failures in cyclooxygenase 2-deficient mice. Cell. 1997 Oct 17;91(2):197–208. doi: 10.1016/s0092-8674(00)80402-x. [DOI] [PubMed] [Google Scholar]
  45. Liu X. H., Kirschenbaum A., Yao S., Lee R., Holland J. F., Levine A. C. Inhibition of cyclooxygenase-2 suppresses angiogenesis and the growth of prostate cancer in vivo. J Urol. 2000 Sep;164(3 Pt 1):820–825. doi: 10.1097/00005392-200009010-00056. [DOI] [PubMed] [Google Scholar]
  46. Maślińska D., Kaliszek A., Opertowska J., Toborowicz J., Deregowski K., Szukiewicz D. Constitutive expression of cyclooxygenase-2 (COX-2) in developing brain. A. Choroid plexus in human fetuses. Folia Neuropathol. 1999;37(4):287–291. [PubMed] [Google Scholar]
  47. McAdam B. F., Catella-Lawson F., Mardini I. A., Kapoor S., Lawson J. A., FitzGerald G. A. Systemic biosynthesis of prostacyclin by cyclooxygenase (COX)-2: the human pharmacology of a selective inhibitor of COX-2. Proc Natl Acad Sci U S A. 1999 Jan 5;96(1):272–277. doi: 10.1073/pnas.96.1.272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. McMillan R. M., Walker E. R. Designing therapeutically effective 5-lipoxygenase inhibitors. Trends Pharmacol Sci. 1992 Aug;13(8):323–330. doi: 10.1016/0165-6147(92)90100-k. [DOI] [PubMed] [Google Scholar]
  49. Miller D. K., Gillard J. W., Vickers P. J., Sadowski S., Léveillé C., Mancini J. A., Charleson P., Dixon R. A., Ford-Hutchinson A. W., Fortin R. Identification and isolation of a membrane protein necessary for leukotriene production. Nature. 1990 Jan 18;343(6255):278–281. doi: 10.1038/343278a0. [DOI] [PubMed] [Google Scholar]
  50. Miller T. A. Protective effects of prostaglandins against gastric mucosal damage: current knowledge and proposed mechanisms. Am J Physiol. 1983 Nov;245(5 Pt 1):G601–G623. doi: 10.1152/ajpgi.1983.245.5.G601. [DOI] [PubMed] [Google Scholar]
  51. Notoya K., Jovanovic D. V., Reboul P., Martel-Pelletier J., Mineau F., Pelletier J. P. The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase-2. J Immunol. 2000 Sep 15;165(6):3402–3410. doi: 10.4049/jimmunol.165.6.3402. [DOI] [PubMed] [Google Scholar]
  52. Ottino P., Bazan H. E. Corneal stimulation of MMP-1, -9 and uPA by platelet-activating factor is mediated by cyclooxygenase-2 metabolites. Curr Eye Res. 2001 Aug;23(2):77–85. doi: 10.1076/ceyr.23.2.77.5471. [DOI] [PubMed] [Google Scholar]
  53. Paredes Yosabeth, Massicotte Frédéric, Pelletier Jean-Pierre, Martel-Pelletier Johanne, Laufer Stefan, Lajeunesse Daniel. Study of the role of leukotriene B()4 in abnormal function of human subchondral osteoarthritis osteoblasts: effects of cyclooxygenase and/or 5-lipoxygenase inhibition. Arthritis Rheum. 2002 Jul;46(7):1804–1812. doi: 10.1002/art.10357. [DOI] [PubMed] [Google Scholar]
  54. Peskar B. M. Role of leukotriene C4 in mucosal damage caused by necrotizing agents and indomethacin in the rat stomach. Gastroenterology. 1991 Mar;100(3):619–626. doi: 10.1016/0016-5085(91)80005-t. [DOI] [PubMed] [Google Scholar]
  55. Rainsford K. D. Leukotrienes in the pathogenesis of NSAID-induced gastric and intestinal mucosal damage. Agents Actions. 1993;39(Spec No):C24–C26. doi: 10.1007/BF01972709. [DOI] [PubMed] [Google Scholar]
  56. Rainsford K. D. The effects of 5-lipoxygenase inhibitors and leukotriene antagonists on the development of gastric lesions induced by nonsteroidal antiinflammatory drugs in mice. Agents Actions. 1987 Aug;21(3-4):316–319. doi: 10.1007/BF01966502. [DOI] [PubMed] [Google Scholar]
  57. Rainsford K. D., Ying C., Smith F. Effects of 5-lipoxygenase inhibitors on interleukin production by human synovial tissues in organ culture: comparison with interleukin-1-synthesis inhibitors. J Pharm Pharmacol. 1996 Jan;48(1):46–52. doi: 10.1111/j.2042-7158.1996.tb05875.x. [DOI] [PubMed] [Google Scholar]
  58. Rouzer C. A., Ford-Hutchinson A. W., Morton H. E., Gillard J. W. MK886, a potent and specific leukotriene biosynthesis inhibitor blocks and reverses the membrane association of 5-lipoxygenase in ionophore-challenged leukocytes. J Biol Chem. 1990 Jan 25;265(3):1436–1442. [PubMed] [Google Scholar]
  59. Rådmark O. P. The molecular biology and regulation of 5-lipoxygenase. Am J Respir Crit Care Med. 2000 Feb;161(2 Pt 2):S11–S15. doi: 10.1164/ajrccm.161.supplement_1.ltta-3. [DOI] [PubMed] [Google Scholar]
  60. Sala A., Aliev G. M., Rossoni G., Berti F., Buccellati C., Burnstock G., Folco G., Maclouf J. Morphological and functional changes of coronary vasculature caused by transcellular biosynthesis of sulfidopeptide leukotrienes in isolated heart of rabbit. Blood. 1996 Mar 1;87(5):1824–1832. [PubMed] [Google Scholar]
  61. Sala A., Bolla M., Zarini S., Müller-Peddinghaus R., Folco G. Release of leukotriene A4 versus leukotriene B4 from human polymorphonuclear leukocytes. J Biol Chem. 1996 Jul 26;271(30):17944–17948. doi: 10.1074/jbc.271.30.17944. [DOI] [PubMed] [Google Scholar]
  62. Sala A., Folco G. Neutrophils, endothelial cells, and cysteinyl leukotrienes: a new approach to neutrophil-dependent inflammation? Biochem Biophys Res Commun. 2001 May 25;283(5):1003–1006. doi: 10.1006/bbrc.2001.4865. [DOI] [PubMed] [Google Scholar]
  63. Sala A., Rossoni G., Berti F., Buccellati C., Bonazzi A., Maclouf J., Folco G. Monoclonal anti-CD18 antibody prevents transcellular biosynthesis of cysteinyl leukotrienes in vitro and in vivo and protects against leukotriene-dependent increase in coronary vascular resistance and myocardial stiffness. Circulation. 2000 Mar 28;101(12):1436–1440. doi: 10.1161/01.cir.101.12.1436. [DOI] [PubMed] [Google Scholar]
  64. Sala A., Rossoni G., Buccellati C., Berti F., Folco G., Maclouf J. Formation of sulphidopeptide-leukotrienes by cell-cell interaction causes coronary vasoconstriction in isolated, cell-perfused heart of rabbit. Br J Pharmacol. 1993 Nov;110(3):1206–1212. doi: 10.1111/j.1476-5381.1993.tb13943.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Sala A., Zarini S., Bolla M. Leukotrienes: lipid bioeffectors of inflammatory reactions. Biochemistry (Mosc) 1998 Jan;63(1):84–92. [PubMed] [Google Scholar]
  66. Schlondorff D. Renal complications of nonsteroidal anti-inflammatory drugs. Kidney Int. 1993 Sep;44(3):643–653. doi: 10.1038/ki.1993.293. [DOI] [PubMed] [Google Scholar]
  67. Schmassmann A., Peskar B. M., Stettler C., Netzer P., Stroff T., Flogerzi B., Halter F. Effects of inhibition of prostaglandin endoperoxide synthase-2 in chronic gastro-intestinal ulcer models in rats. Br J Pharmacol. 1998 Mar;123(5):795–804. doi: 10.1038/sj.bjp.0701672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Serhan C. N., Levy B. D., Clish C. B., Gronert K., Chiang N. Lipoxins, aspirin-triggered 15-epi-lipoxin stable analogs and their receptors in anti-inflammation: a window for therapeutic opportunity. Ernst Schering Res Found Workshop. 2000;(31):143–185. doi: 10.1007/978-3-662-04047-8_8. [DOI] [PubMed] [Google Scholar]
  69. Serhan C. N. Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL): a jungle of cell-cell interactions or a therapeutic opportunity? Prostaglandins. 1997 Feb;53(2):107–137. doi: 10.1016/s0090-6980(97)00001-4. [DOI] [PubMed] [Google Scholar]
  70. Serhan C. N., Oliw E. Unorthodox routes to prostanoid formation: new twists in cyclooxygenase-initiated pathways. J Clin Invest. 2001 Jun;107(12):1481–1489. doi: 10.1172/JCI13375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Simon Ann Marie, Manigrasso Michaele Beth, O'Connor J. Patrick. Cyclo-oxygenase 2 function is essential for bone fracture healing. J Bone Miner Res. 2002 Jun;17(6):963–976. doi: 10.1359/jbmr.2002.17.6.963. [DOI] [PubMed] [Google Scholar]
  72. Smith M. J., Ford-Hutchinson A. W., Bray M. A. Leukotriene B: a potential mediator of inflammation. J Pharm Pharmacol. 1980 Jul;32(7):517–518. doi: 10.1111/j.2042-7158.1980.tb12985.x. [DOI] [PubMed] [Google Scholar]
  73. Smith W. L., Garavito R. M., DeWitt D. L. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J Biol Chem. 1996 Dec 27;271(52):33157–33160. doi: 10.1074/jbc.271.52.33157. [DOI] [PubMed] [Google Scholar]
  74. Sodin-Semrl S., Taddeo B., Tseng D., Varga J., Fiore S. Lipoxin A4 inhibits IL-1 beta-induced IL-6, IL-8, and matrix metalloproteinase-3 production in human synovial fibroblasts and enhances synthesis of tissue inhibitors of metalloproteinases. J Immunol. 2000 Mar 1;164(5):2660–2666. doi: 10.4049/jimmunol.164.5.2660. [DOI] [PubMed] [Google Scholar]
  75. Sousa A. r., Pfister R., Christie P. E., Lane S. J., Nasser S. M., Schmitz-Schumann M., Lee T. H. Enhanced expression of cyclo-oxygenase isoenzyme 2 (COX-2) in asthmatic airways and its cellular distribution in aspirin-sensitive asthma. Thorax. 1997 Nov;52(11):940–945. doi: 10.1136/thx.52.11.940. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Spurney R. F., Ruiz P., Pisetsky D. S., Coffman T. M. Enhanced renal leukotriene production in murine lupus: role of lipoxygenase metabolites. Kidney Int. 1991 Jan;39(1):95–102. doi: 10.1038/ki.1991.12. [DOI] [PubMed] [Google Scholar]
  77. Steinhilber D. 5-Lipoxygenase: a target for antiinflammatory drugs revisited. Curr Med Chem. 1999 Jan;6(1):71–85. [PubMed] [Google Scholar]
  78. Stichtenoth D. O., Frölich J. C. COX-2 and the kidneys. Curr Pharm Des. 2000 Nov;6(17):1737–1753. doi: 10.2174/1381612003398717. [DOI] [PubMed] [Google Scholar]
  79. Takano T., Fiore S., Maddox J. F., Brady H. R., Petasis N. A., Serhan C. N. Aspirin-triggered 15-epi-lipoxin A4 (LXA4) and LXA4 stable analogues are potent inhibitors of acute inflammation: evidence for anti-inflammatory receptors. J Exp Med. 1997 May 5;185(9):1693–1704. doi: 10.1084/jem.185.9.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Tries S., Neupert W., Laufer S. The mechanism of action of the new antiinflammatory compound ML3000: inhibition of 5-LOX and COX-1/2. Inflamm Res. 2002 Mar;51(3):135–143. doi: 10.1007/pl00000285. [DOI] [PubMed] [Google Scholar]
  81. Vane J. R., Botting R. M. New insights into the mode of action of anti-inflammatory drugs. Inflamm Res. 1995 Jan;44(1):1–10. doi: 10.1007/BF01630479. [DOI] [PubMed] [Google Scholar]
  82. Vane J. R. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971 Jun 23;231(25):232–235. doi: 10.1038/newbio231232a0. [DOI] [PubMed] [Google Scholar]
  83. Waldman S. A., Vitow C., Osborne B., Gillen L., Argentieri D. C., Wong F. A., Smith I. L., Chow A. T., Misiti J., Bjornsson T. D. Pharmacokinetics and pharmacodynamics of tepoxalin after single oral dose administration to healthy volunteers. J Clin Pharmacol. 1996 May;36(5):462–468. doi: 10.1002/j.1552-4604.1996.tb05033.x. [DOI] [PubMed] [Google Scholar]
  84. Wallace J. L., Bak A., McKnight W., Asfaha S., Sharkey K. A., MacNaughton W. K. Cyclooxygenase 1 contributes to inflammatory responses in rats and mice: implications for gastrointestinal toxicity. Gastroenterology. 1998 Jul;115(1):101–109. doi: 10.1016/s0016-5085(98)70370-1. [DOI] [PubMed] [Google Scholar]
  85. Wallace J. L., Carter L., McKnight W., Tries S., Laufer S. ML 3000 reduces gastric prostaglandin synthesis without causing mucosal injury. Eur J Pharmacol. 1994 Dec 27;271(2-3):525–531. doi: 10.1016/0014-2999(94)90814-1. [DOI] [PubMed] [Google Scholar]
  86. Wallace J. L., Chapman K., McKnight W. Limited anti-inflammatory efficacy of cyclo-oxygenase-2 inhibition in carrageenan-airpouch inflammation. Br J Pharmacol. 1999 Mar;126(5):1200–1204. doi: 10.1038/sj.bjp.0702420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Wallace J. L., Keenan C. M. Leukotriene B4 potentiates colonic ulceration in the rat. Dig Dis Sci. 1990 May;35(5):622–629. doi: 10.1007/BF01540411. [DOI] [PubMed] [Google Scholar]
  88. Wallace J. L., McKnight G. W., Keenan C. M., Byles N. I., MacNaughton W. K. Effects of leukotrienes on susceptibility of the rat stomach to damage and investigation of the mechanism of action. Gastroenterology. 1990 May;98(5 Pt 1):1178–1186. doi: 10.1016/0016-5085(90)90331-t. [DOI] [PubMed] [Google Scholar]
  89. Weinblatt M. E., Kremer J. M., Coblyn J. S., Helfgott S., Maier A. L., Petrillo G., Henson B., Rubin P., Sperling R. Zileuton, a 5-lipoxygenase inhibitor in rheumatoid arthritis. J Rheumatol. 1992 Oct;19(10):1537–1541. [PubMed] [Google Scholar]
  90. Zhang Xinping, Schwarz Edward M., Young Donald A., Puzas J. Edward, Rosier Randy N., O'Keefe Regis J. Cyclooxygenase-2 regulates mesenchymal cell differentiation into the osteoblast lineage and is critically involved in bone repair. J Clin Invest. 2002 Jun;109(11):1405–1415. doi: 10.1172/JCI15681. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES