Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Aug;65(8):3391–3398. doi: 10.1128/iai.65.8.3391-3398.1997

Experimental infection of native human ureteral tissue with Neisseria gonorrhoeae: adhesion, invasion, intracellular fate, exocytosis, and passage through a stratified epithelium.

I M Mosleh 1, H J Boxberger 1, M J Sessler 1, T F Meyer 1
PMCID: PMC175480  PMID: 9234803

Abstract

The exact mechanisms by which Neisseria gonorrhoeae invades the mucosal lining to cause local and disseminated infections are still not fully understood. The ability of gonococci to infect the human ureter and the mechanism of gonococcal infection in a stratified epithelium were investigated by using distal ureters excised from healthy adult kidney donors. In morphological terms, this tissue closely resembles parts of the urethral proximal epithelium, a site of natural gonococcal infection. Using piliated and nonpiliated variants of N. gonorrhoeae MS11, we demonstrated the importance of pili in the attachment of gonococci to native epithelial cells as well as their association with epithelial damage. By electron microscopy we elucidated the different mechanisms of colonization and invasion of a stratified epithelium, including adherence to surface cells, invasion and eventual release from infected cells, disintegration of intercellular connections followed by paracellular tissue infiltration, invasion of deeper cells, and initiation of cellular destruction and exfoliation resulting in thinning of the mucosa.

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apicella M. A., Ketterer M., Lee F. K., Zhou D., Rice P. A., Blake M. S. The pathogenesis of gonococcal urethritis in men: confocal and immunoelectron microscopic analysis of urethral exudates from men infected with Neisseria gonorrhoeae. J Infect Dis. 1996 Mar;173(3):636–646. doi: 10.1093/infdis/173.3.636. [DOI] [PubMed] [Google Scholar]
  2. Bessen D., Gotschlich E. C. Interactions of gonococci with HeLa cells: attachment, detachment, replication, penetration, and the role of protein II. Infect Immun. 1986 Oct;54(1):154–160. doi: 10.1128/iai.54.1.154-160.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Boxberger H. J., Sessler M. J., Maetzel B., Meyer T. F. Highly polarized primary epithelial cells from human nasopharynx grown as spheroid-like vesicles. Eur J Cell Biol. 1993 Oct;62(1):140–151. [PubMed] [Google Scholar]
  4. Boxberger H. J., Sessler M. J., Maetzel B., Mosleh I. M., Becker H. D., Meyer T. F. Highly polarized primary urothelial cells from human ureter grown as spheroid-like vesicles. Epithelial Cell Biol. 1994 Jul;3(3):85–95. [PubMed] [Google Scholar]
  5. Chen T., Belland R. J., Wilson J., Swanson J. Adherence of pilus- Opa+ gonococci to epithelial cells in vitro involves heparan sulfate. J Exp Med. 1995 Aug 1;182(2):511–517. doi: 10.1084/jem.182.2.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen T., Gotschlich E. C. CGM1a antigen of neutrophils, a receptor of gonococcal opacity proteins. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14851–14856. doi: 10.1073/pnas.93.25.14851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Evans B. A. Ultrastructural study of cervical gonorrhea. J Infect Dis. 1977 Aug;136(2):248–255. doi: 10.1093/infdis/136.2.248. [DOI] [PubMed] [Google Scholar]
  8. Fujita K., Yamamoto T., Kitagawa R. Binding sites for P and/or type 1-piliated Escherichia coli in human ureter. J Urol. 1991 Jul;146(1):217–222. doi: 10.1016/s0022-5347(17)37755-8. [DOI] [PubMed] [Google Scholar]
  9. Fujita K., Yamamoto T., Yokota T., Kitagawa R. In vitro adherence of type 1-fimbriated uropathogenic Escherichia coli to human ureteral mucosa. Infect Immun. 1989 Aug;57(8):2574–2579. doi: 10.1128/iai.57.8.2574-2579.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fujita K., Yokota T., Oguri T., Fujime M., Kitagawa R. In vitro adherence of Staphylococcus saprophyticus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus aureus to human ureter. Urol Res. 1992;20(6):399–402. doi: 10.1007/BF00294495. [DOI] [PubMed] [Google Scholar]
  11. Granger B. L., Green S. A., Gabel C. A., Howe C. L., Mellman I., Helenius A. Characterization and cloning of lgp110, a lysosomal membrane glycoprotein from mouse and rat cells. J Biol Chem. 1990 Jul 15;265(20):12036–12043. [PubMed] [Google Scholar]
  12. Grassmé H. U., Ireland R. M., van Putten J. P. Gonococcal opacity protein promotes bacterial entry-associated rearrangements of the epithelial cell actin cytoskeleton. Infect Immun. 1996 May;64(5):1621–1630. doi: 10.1128/iai.64.5.1621-1630.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gray-Owen S. D., Dehio C., Haude A., Grunert F., Meyer T. F. CD66 carcinoembryonic antigens mediate interactions between Opa-expressing Neisseria gonorrhoeae and human polymorphonuclear phagocytes. EMBO J. 1997 Jun 16;16(12):3435–3445. doi: 10.1093/emboj/16.12.3435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gregg C. R., Melly M. A., Hellerqvist C. G., Coniglio J. G., McGee Z. A. Toxic activity of purified lipopolysaccharide of Neisseria gonorrhoeae for human fallopian tube mucosa. J Infect Dis. 1981 Mar;143(3):432–439. doi: 10.1093/infdis/143.3.432. [DOI] [PubMed] [Google Scholar]
  15. Gregg C. R., Melly M. A., McGee Z. A. Gonococcal lipopolysaccharide: a toxin for human fallopian tube mucosa. Am J Obstet Gynecol. 1980 Dec 1;138(7 Pt 2):981–984. doi: 10.1016/0002-9378(80)91092-3. [DOI] [PubMed] [Google Scholar]
  16. Hauck C. R., Meyer T. F. The lysosomal/phagosomal membrane protein h-lamp-1 is a target of the IgA1 protease of Neisseria gonorrhoeae. FEBS Lett. 1997 Mar 17;405(1):86–90. doi: 10.1016/s0014-5793(97)00163-4. [DOI] [PubMed] [Google Scholar]
  17. Kellogg D. S., Jr, Cohen I. R., Norins L. C., Schroeter A. L., Reising G. Neisseria gonorrhoeae. II. Colonial variation and pathogenicity during 35 months in vitro. J Bacteriol. 1968 Sep;96(3):596–605. doi: 10.1128/jb.96.3.596-605.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kupsch E. M., Knepper B., Kuroki T., Heuer I., Meyer T. F. Variable opacity (Opa) outer membrane proteins account for the cell tropisms displayed by Neisseria gonorrhoeae for human leukocytes and epithelial cells. EMBO J. 1993 Feb;12(2):641–650. doi: 10.1002/j.1460-2075.1993.tb05697.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. König G. Polychloroprene glue as an adhesive for mounting specimens for SEM. J Electron Microsc Tech. 1991 Apr;17(4):467–468. doi: 10.1002/jemt.1060170410. [DOI] [PubMed] [Google Scholar]
  20. Makino S., van Putten J. P., Meyer T. F. Phase variation of the opacity outer membrane protein controls invasion by Neisseria gonorrhoeae into human epithelial cells. EMBO J. 1991 Jun;10(6):1307–1315. doi: 10.1002/j.1460-2075.1991.tb07649.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. McGee Z. A., Johnson A. P., Taylor-Robinson D. Pathogenic mechanisms of Neisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J Infect Dis. 1981 Mar;143(3):413–422. doi: 10.1093/infdis/143.3.413. [DOI] [PubMed] [Google Scholar]
  22. McGee Z. A., Stephens D. S., Hoffman L. H., Schlech W. F., 3rd, Horn R. G. Mechanisms of mucosal invasion by pathogenic Neisseria. Rev Infect Dis. 1983 Sep-Oct;5 (Suppl 4):S708–S714. doi: 10.1093/clinids/5.supplement_4.s708. [DOI] [PubMed] [Google Scholar]
  23. Melly M. A., Gregg C. R., McGee Z. A. Studies of toxicity of Neisseria gonorrhoeae for human fallopian tube mucosa. J Infect Dis. 1981 Mar;143(3):423–431. doi: 10.1093/infdis/143.3.423. [DOI] [PubMed] [Google Scholar]
  24. Meyer T. F., Mlawer N., So M. Pilus expression in Neisseria gonorrhoeae involves chromosomal rearrangement. Cell. 1982 Aug;30(1):45–52. doi: 10.1016/0092-8674(82)90010-1. [DOI] [PubMed] [Google Scholar]
  25. Mårdh P. A., Baldetorp B., Håkansson C. H., Fritz H., Weström L. Studies of ciliated epithelia of the human genital tract. 3: Mucociliary wave activity in organ cultures of human Fallopian tubes challenged with Neisseria gonorrhoeae and gonococcal endotoxin. Br J Vener Dis. 1979 Aug;55(4):256–264. doi: 10.1136/sti.55.4.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Nassif X., Beretti J. L., Lowy J., Stenberg P., O'Gaora P., Pfeifer J., Normark S., So M. Roles of pilin and PilC in adhesion of Neisseria meningitidis to human epithelial and endothelial cells. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3769–3773. doi: 10.1073/pnas.91.9.3769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Richardson W. P., Sadoff J. C. Induced engulfment of Neisseria gonorrhoeae by tissue culture cells. Infect Immun. 1988 Sep;56(9):2512–2514. doi: 10.1128/iai.56.9.2512-2514.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rudel T., Scheurerpflug I., Meyer T. F. Neisseria PilC protein identified as type-4 pilus tip-located adhesin. Nature. 1995 Jan 26;373(6512):357–359. doi: 10.1038/373357a0. [DOI] [PubMed] [Google Scholar]
  29. Rudel T., van Putten J. P., Gibbs C. P., Haas R., Meyer T. F. Interaction of two variable proteins (PilE and PilC) required for pilus-mediated adherence of Neisseria gonorrhoeae to human epithelial cells. Mol Microbiol. 1992 Nov;6(22):3439–3450. doi: 10.1111/j.1365-2958.1992.tb02211.x. [DOI] [PubMed] [Google Scholar]
  30. Shaw J. H., Falkow S. Model for invasion of human tissue culture cells by Neisseria gonorrhoeae. Infect Immun. 1988 Jun;56(6):1625–1632. doi: 10.1128/iai.56.6.1625-1632.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Stephens D. S., Farley M. M. Pathogenic events during infection of the human nasopharynx with Neisseria meningitidis and Haemophilus influenzae. Rev Infect Dis. 1991 Jan-Feb;13(1):22–33. doi: 10.1093/clinids/13.1.22. [DOI] [PubMed] [Google Scholar]
  32. Stephens D. S., McGee Z. A. Attachment of Neisseria meningitidis to human mucosal surfaces: influence of pili and type of receptor cell. J Infect Dis. 1981 Apr;143(4):525–532. doi: 10.1093/infdis/143.4.525. [DOI] [PubMed] [Google Scholar]
  33. Stephens D. S., McGee Z. A., Cooper M. D. Cytopathic effects of the pathogenic Neisseria. Studies using human fallopian tube organ cultures and human nasopharyngeal organ cultures. Antonie Van Leeuwenhoek. 1987;53(6):575–584. doi: 10.1007/BF00415519. [DOI] [PubMed] [Google Scholar]
  34. Thompson J. A., Grunert F., Zimmermann W. Carcinoembryonic antigen gene family: molecular biology and clinical perspectives. J Clin Lab Anal. 1991;5(5):344–366. doi: 10.1002/jcla.1860050510. [DOI] [PubMed] [Google Scholar]
  35. Tjia K. F., van Putten J. P., Pels E., Zanen H. C. The interaction between Neisseria gonorrhoeae and the human cornea in organ culture. An electron microscopic study. Graefes Arch Clin Exp Ophthalmol. 1988;226(4):341–345. doi: 10.1007/BF02172964. [DOI] [PubMed] [Google Scholar]
  36. Virji M., Everson J. S. Comparative virulence of opacity variants of Neisseria gonorrhoeae strain P9. Infect Immun. 1981 Mar;31(3):965–970. doi: 10.1128/iai.31.3.965-970.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Virji M., Kayhty H., Ferguson D. J., Alexandrescu C., Heckels J. E., Moxon E. R. The role of pili in the interactions of pathogenic Neisseria with cultured human endothelial cells. Mol Microbiol. 1991 Aug;5(8):1831–1841. doi: 10.1111/j.1365-2958.1991.tb00807.x. [DOI] [PubMed] [Google Scholar]
  38. Virji M., Makepeace K., Ferguson D. J., Watt S. M. Carcinoembryonic antigens (CD66) on epithelial cells and neutrophils are receptors for Opa proteins of pathogenic neisseriae. Mol Microbiol. 1996 Dec;22(5):941–950. doi: 10.1046/j.1365-2958.1996.01551.x. [DOI] [PubMed] [Google Scholar]
  39. Virji M., Makepeace K., Peak I., Payne G., Saunders J. R., Ferguson D. J., Moxon E. R. Functional implications of the expression of PilC proteins in meningococci. Mol Microbiol. 1995 Jun;16(6):1087–1097. doi: 10.1111/j.1365-2958.1995.tb02334.x. [DOI] [PubMed] [Google Scholar]
  40. Ward M. E., Watt P. J. Adherence of Neisseria gonorrhoeae to urethral mucosal cells: an electron-microscopic study of human gonorrhea. J Infect Dis. 1972 Dec;126(6):601–605. doi: 10.1093/infdis/126.6.601. [DOI] [PubMed] [Google Scholar]
  41. Ward M. E., Watt P. J., Robertson J. N. The human fallopian tube: a laboratory model for gonococcal infection. J Infect Dis. 1974 Jun;129(6):650–659. doi: 10.1093/infdis/129.6.650. [DOI] [PubMed] [Google Scholar]
  42. Weel J. F., Hopman C. T., van Putten J. P. Bacterial entry and intracellular processing of Neisseria gonorrhoeae in epithelial cells: immunomorphological evidence for alterations in the major outer membrane protein P.IB. J Exp Med. 1991 Sep 1;174(3):705–715. doi: 10.1084/jem.174.3.705. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Weel J. F., van Putten J. P. Fate of the major outer membrane protein P.IA in early and late events of gonococcal infection of epithelial cells. Res Microbiol. 1991 Nov-Dec;142(9):985–993. doi: 10.1016/0923-2508(91)90009-y. [DOI] [PubMed] [Google Scholar]
  44. van Putten J. P., Paul S. M. Binding of syndecan-like cell surface proteoglycan receptors is required for Neisseria gonorrhoeae entry into human mucosal cells. EMBO J. 1995 May 15;14(10):2144–2154. doi: 10.1002/j.1460-2075.1995.tb07208.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES