Skip to main content
Infection and Immunity logoLink to Infection and Immunity
. 1997 Sep;65(9):3529–3538. doi: 10.1128/iai.65.9.3529-3538.1997

Disruption of each of the secreted aspartyl proteinase genes SAP1, SAP2, and SAP3 of Candida albicans attenuates virulence.

B Hube 1, D Sanglard 1, F C Odds 1, D Hess 1, M Monod 1, W Schäfer 1, A J Brown 1, N A Gow 1
PMCID: PMC175503  PMID: 9284116

Abstract

Secreted aspartyl proteinases (Saps), encoded by a gene family with at least nine members (SAP1 to SAP9), are one of the most discussed virulence factors produced by the human pathogen Candida albicans. In order to study the role of each Sap isoenzyme in pathogenicity, we have constructed strains which harbor mutations at selected SAP genes. SAP1, SAP2, and SAP3, which are regulated differentially in vitro, were mutated by targeted gene disruption. The growth rates of all homozygous null mutants were similar to those of the isogenic wild-type parental strain (SC5314) in complex and defined media. In medium with protein as the sole source of nitrogen, sap1 and sap3 mutants grew with reduced growth rates but reached optical densities similar to those measured for SC5314. In contrast, sap2 null mutants tended to clump, grew poorly in this medium, and produced the lowest proteolytic activity. Addition of ammonium ions reversed such growth defects. These results support the view that Sap2 is the dominant isoenzyme. When sap1, sap2, and sap3 mutants were injected intravenously in guinea pigs and mice, the animals had increased survival rates compared to those of control animals infected with SC5314. However, reduction of proteolytic activity in vitro did not correlate directly with the extent of attenuation of virulence observed for all Sap-deficient mutants. These data suggest that SAP1, SAP2, and SAP3 all contribute to the overall virulence of C. albicans and presumably all play important roles during disseminated infections.

Full Text

The Full Text of this article is available as a PDF (555.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama K., Shida T., Yasueda H., Mita H., Yamamoto T., Yamaguchi H. Atopic asthma caused by Candida albicans acid protease: case reports. Allergy. 1994 Oct;49(9):778–781. doi: 10.1111/j.1398-9995.1994.tb02102.x. [DOI] [PubMed] [Google Scholar]
  2. Boeke J. D., LaCroute F., Fink G. R. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–346. doi: 10.1007/BF00330984. [DOI] [PubMed] [Google Scholar]
  3. Borg M., Rüchel R. Expression of extracellular acid proteinase by proteolytic Candida spp. during experimental infection of oral mucosa. Infect Immun. 1988 Mar;56(3):626–631. doi: 10.1128/iai.56.3.626-631.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cassone A., De Bernardis F., Mondello F., Ceddia T., Agatensi L. Evidence for a correlation between proteinase secretion and vulvovaginal candidosis. J Infect Dis. 1987 Nov;156(5):777–783. doi: 10.1093/infdis/156.5.777. [DOI] [PubMed] [Google Scholar]
  5. Colina A. R., Aumont F., Deslauriers N., Belhumeur P., de Repentigny L. Evidence for degradation of gastrointestinal mucin by Candida albicans secretory aspartyl proteinase. Infect Immun. 1996 Nov;64(11):4514–4519. doi: 10.1128/iai.64.11.4514-4519.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cutler J. E. Putative virulence factors of Candida albicans. Annu Rev Microbiol. 1991;45:187–218. doi: 10.1146/annurev.mi.45.100191.001155. [DOI] [PubMed] [Google Scholar]
  7. De Bernardis F., Agatensi L., Ross I. K., Emerson G. W., Lorenzini R., Sullivan P. A., Cassone A. Evidence for a role for secreted aspartate proteinase of Candida albicans in vulvovaginal candidiasis. J Infect Dis. 1990 Jun;161(6):1276–1283. doi: 10.1093/infdis/161.6.1276. [DOI] [PubMed] [Google Scholar]
  8. De Bernardis F., Chiani P., Ciccozzi M., Pellegrini G., Ceddia T., D'Offizzi G., Quinti I., Sullivan P. A., Cassone A. Elevated aspartic proteinase secretion and experimental pathogenicity of Candida albicans isolates from oral cavities of subjects infected with human immunodeficiency virus. Infect Immun. 1996 Feb;64(2):466–471. doi: 10.1128/iai.64.2.466-471.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fallon K., Bausch K., Noonan J., Huguenel E., Tamburini P. Role of aspartic proteases in disseminated Candida albicans infection in mice. Infect Immun. 1997 Feb;65(2):551–556. doi: 10.1128/iai.65.2.551-556.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
  11. Fonzi W. A., Irwin M. Y. Isogenic strain construction and gene mapping in Candida albicans. Genetics. 1993 Jul;134(3):717–728. doi: 10.1093/genetics/134.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ghannoum M., Abu Elteen K. Correlative relationship between proteinase production, adherence and pathogenicity of various strains of Candida albicans. J Med Vet Mycol. 1986 Oct;24(5):407–413. doi: 10.1080/02681218680000621. [DOI] [PubMed] [Google Scholar]
  13. Goldman R. C., Frost D. J., Capobianco J. O., Kadam S., Rasmussen R. R., Abad-Zapatero C. Antifungal drug targets: Candida secreted aspartyl protease and fungal wall beta-glucan synthesis. Infect Agents Dis. 1995 Dec;4(4):228–247. [PubMed] [Google Scholar]
  14. Gow N. A., Robbins P. W., Lester J. W., Brown A. J., Fonzi W. A., Chapman T., Kinsman O. S. A hyphal-specific chitin synthase gene (CHS2) is not essential for growth, dimorphism, or virulence of Candida albicans. Proc Natl Acad Sci U S A. 1994 Jun 21;91(13):6216–6220. doi: 10.1073/pnas.91.13.6216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hoegl L., Ollert M., Korting H. C. The role of Candida albicans secreted aspartic proteinase in the development of candidoses. J Mol Med (Berl) 1996 Mar;74(3):135–142. doi: 10.1007/BF01575445. [DOI] [PubMed] [Google Scholar]
  16. Hube B. Candida albicans secreted aspartyl proteinases. Curr Top Med Mycol. 1996 Dec;7(1):55–69. [PubMed] [Google Scholar]
  17. Hube B., Monod M., Schofield D. A., Brown A. J., Gow N. A. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol Microbiol. 1994 Oct;14(1):87–99. doi: 10.1111/j.1365-2958.1994.tb01269.x. [DOI] [PubMed] [Google Scholar]
  18. Hube B., Turver C. J., Odds F. C., Eiffert H., Boulnois G. J., Köchel H., Rüchel R. Sequence of the Candida albicans gene encoding the secretory aspartate proteinase. J Med Vet Mycol. 1991;29(2):129–132. [PubMed] [Google Scholar]
  19. Ishiguro A., Homma M., Sukai T., Higashide K., Torii S., Tanaka K. Immunoblotting analysis of sera from patients with candidal vaginitis and healthy females. J Med Vet Mycol. 1992;30(4):281–292. doi: 10.1080/02681219280000371. [DOI] [PubMed] [Google Scholar]
  20. Jaton-Ogay K., Paris S., Huerre M., Quadroni M., Falchetto R., Togni G., Latgé J. P., Monod M. Cloning and disruption of the gene encoding an extracellular metalloprotease of Aspergillus fumigatus. Mol Microbiol. 1994 Dec;14(5):917–928. doi: 10.1111/j.1365-2958.1994.tb01327.x. [DOI] [PubMed] [Google Scholar]
  21. Kaminishi H., Hamatake H., Cho T., Tamaki T., Suenaga N., Fujii T., Hagihara Y., Maeda H. Activation of blood clotting factors by microbial proteinases. FEMS Microbiol Lett. 1994 Sep 1;121(3):327–332. doi: 10.1111/j.1574-6968.1994.tb07121.x. [DOI] [PubMed] [Google Scholar]
  22. Kaminishi H., Tanaka M., Cho T., Maeda H., Hagihara Y. Activation of the plasma kallikrein-kinin system by Candida albicans proteinase. Infect Immun. 1990 Jul;58(7):2139–2143. doi: 10.1128/iai.58.7.2139-2143.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kirsch D. R., Whitney R. R. Pathogenicity of Candida albicans auxotrophic mutants in experimental infections. Infect Immun. 1991 Sep;59(9):3297–3300. doi: 10.1128/iai.59.9.3297-3300.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Kurtz M. B., Cortelyou M. W., Kirsch D. R. Integrative transformation of Candida albicans, using a cloned Candida ADE2 gene. Mol Cell Biol. 1986 Jan;6(1):142–149. doi: 10.1128/mcb.6.1.142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Kwon-Chung K. J., Lehman D., Good C., Magee P. T. Genetic evidence for role of extracellular proteinase in virulence of Candida albicans. Infect Immun. 1985 Sep;49(3):571–575. doi: 10.1128/iai.49.3.571-575.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Köhler J. R., Fink G. R. Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13223–13228. doi: 10.1073/pnas.93.23.13223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Leberer E., Harcus D., Broadbent I. D., Clark K. L., Dignard D., Ziegelbauer K., Schmidt A., Gow N. A., Brown A. J., Thomas D. Y. Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13217–13222. doi: 10.1073/pnas.93.23.13217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Macdonald F., Odds F. C. Inducible proteinase of Candida albicans in diagnostic serology and in the pathogenesis of systemic candidosis. J Med Microbiol. 1980 Aug;13(3):423–435. doi: 10.1099/00222615-13-3-423. [DOI] [PubMed] [Google Scholar]
  29. Macdonald F., Odds F. C. Virulence for mice of a proteinase-secreting strain of Candida albicans and a proteinase-deficient mutant. J Gen Microbiol. 1983 Feb;129(2):431–438. doi: 10.1099/00221287-129-2-431. [DOI] [PubMed] [Google Scholar]
  30. Magee B. B., Hube B., Wright R. J., Sullivan P. J., Magee P. T. The genes encoding the secreted aspartyl proteinases of Candida albicans constitute a family with at least three members. Infect Immun. 1993 Aug;61(8):3240–3243. doi: 10.1128/iai.61.8.3240-3243.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Manning M., Snoddy C. B., Fromtling R. A. Comparative pathogenicity of auxotrophic mutants of Candida albicans. Can J Microbiol. 1984 Jan;30(1):31–35. doi: 10.1139/m84-005. [DOI] [PubMed] [Google Scholar]
  32. Matthews R. C. Pathogenicity determinants of Candida albicans: potential targets for immunotherapy? Microbiology. 1994 Jul;140(Pt 7):1505–1511. doi: 10.1099/13500872-140-7-1505. [DOI] [PubMed] [Google Scholar]
  33. Miyasaki S. H., White T. C., Agabian N. A fourth secreted aspartyl proteinase gene (SAP4) and a CARE2 repetitive element are located upstream of the SAP1 gene in Candida albicans. J Bacteriol. 1994 Mar;176(6):1702–1710. doi: 10.1128/jb.176.6.1702-1710.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Monod M., Paris S., Sarfati J., Jaton-Ogay K., Ave P., Latgé J. P. Virulence of alkaline protease-deficient mutants of Aspergillus fumigatus. FEMS Microbiol Lett. 1993 Jan 1;106(1):39–46. doi: 10.1111/j.1574-6968.1993.tb05932.x. [DOI] [PubMed] [Google Scholar]
  35. Monod M., Togni G., Hube B., Sanglard D. Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol Microbiol. 1994 Jul;13(2):357–368. doi: 10.1111/j.1365-2958.1994.tb00429.x. [DOI] [PubMed] [Google Scholar]
  36. Morrow B., Ramsey H., Soll D. R. Regulation of phase-specific genes in the more general switching system of Candida albicans strain 3153A. J Med Vet Mycol. 1994;32(4):287–294. doi: 10.1080/02681219480000361. [DOI] [PubMed] [Google Scholar]
  37. Morrow B., Srikantha T., Soll D. R. Transcription of the gene for a pepsinogen, PEP1, is regulated by white-opaque switching in Candida albicans. Mol Cell Biol. 1992 Jul;12(7):2997–3005. doi: 10.1128/mcb.12.7.2997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Odds F. C. Antifungal susceptibility testing of Candida spp. by relative growth measurement at single concentrations of antifungal agents. Antimicrob Agents Chemother. 1992 Aug;36(8):1727–1737. doi: 10.1128/aac.36.8.1727. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Ollert M. W., Söhnchen R., Korting H. C., Ollert U., Bräutigam S., Bräutigam W. Mechanisms of adherence of Candida albicans to cultured human epidermal keratinocytes. Infect Immun. 1993 Nov;61(11):4560–4568. doi: 10.1128/iai.61.11.4560-4568.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Perfect J. R. Fungal virulence genes as targets for antifungal chemotherapy. Antimicrob Agents Chemother. 1996 Jul;40(7):1577–1583. doi: 10.1128/aac.40.7.1577. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Polak A. Virulence of Candida albicans mutants. Mycoses. 1992 Jan-Feb;35(1-2):9–16. doi: 10.1111/j.1439-0507.1992.tb00813.x. [DOI] [PubMed] [Google Scholar]
  42. Ross I. K., De Bernardis F., Emerson G. W., Cassone A., Sullivan P. A. The secreted aspartate proteinase of Candida albicans: physiology of secretion and virulence of a proteinase-deficient mutant. J Gen Microbiol. 1990 Apr;136(4):687–694. doi: 10.1099/00221287-136-4-687. [DOI] [PubMed] [Google Scholar]
  43. Rüchel R., Böning-Stutzer B., Mari A. A synoptical approach to the diagnosis of candidosis, relying on serological antigen and antibody tests, on culture, and on evaluation of clinical data. Mycoses. 1988 Feb;31(2):87–106. [PubMed] [Google Scholar]
  44. Rüchel R. Properties of a purified proteinase from the yeast Candida albicans. Biochim Biophys Acta. 1981 May 14;659(1):99–113. doi: 10.1016/0005-2744(81)90274-6. [DOI] [PubMed] [Google Scholar]
  45. Rüchel R., Uhlemann K., Böning B. Secretion of acid proteinases by different species of the genus Candida. Zentralbl Bakteriol Mikrobiol Hyg A. 1983 Nov;255(4):537–548. [PubMed] [Google Scholar]
  46. Sanglard D., Hube B., Monod M., Odds F. C., Gow N. A. A triple deletion of the secreted aspartyl proteinase genes SAP4, SAP5, and SAP6 of Candida albicans causes attenuated virulence. Infect Immun. 1997 Sep;65(9):3539–3546. doi: 10.1128/iai.65.9.3539-3546.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Shepherd M. G. Pathogenicity of morphological and auxotrophic mutants of Candida albicans in experimental infections. Infect Immun. 1985 Nov;50(2):541–544. doi: 10.1128/iai.50.2.541-544.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Smolenski G., Sullivan P. A., Cutfield S. M., Cutfield J. F. Analysis of secreted aspartic proteinases from Candida albicans: purification and characterization of individual Sap1, Sap2 and Sap3 isoenzymes. Microbiology. 1997 Feb;143(Pt 2):349–356. doi: 10.1099/00221287-143-2-349. [DOI] [PubMed] [Google Scholar]
  49. Srikantha T., Morrow B., Schröppel K., Soll D. R. The frequency of integrative transformation at phase-specific genes of Candida albicans correlates with their transcriptional state. Mol Gen Genet. 1995 Feb 6;246(3):342–352. doi: 10.1007/BF00288607. [DOI] [PubMed] [Google Scholar]
  50. Tang C. M., Cohen J., Krausz T., Van Noorden S., Holden D. W. The alkaline protease of Aspergillus fumigatus is not a virulence determinant in two murine models of invasive pulmonary aspergillosis. Infect Immun. 1993 May;61(5):1650–1656. doi: 10.1128/iai.61.5.1650-1656.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Tsushima H., Mine H. Cleavage of human big endothelin-1 by Candida albicans aspartic proteinase. FEMS Immunol Med Microbiol. 1995 Mar;11(1):69–72. doi: 10.1111/j.1574-695X.1995.tb00080.x. [DOI] [PubMed] [Google Scholar]
  52. Tsushima H., Mine H., Kawakami Y., Hyodoh F., Ueki A. Candida albicans aspartic proteinase cleaves and inactivates human epidermal cysteine proteinase inhibitor, cystatin A. Microbiology. 1994 Jan;140(Pt 1):167–171. doi: 10.1099/13500872-140-1-167. [DOI] [PubMed] [Google Scholar]
  53. White T. C., Agabian N. Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol. 1995 Sep;177(18):5215–5221. doi: 10.1128/jb.177.18.5215-5221.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. White T. C., Miyasaki S. H., Agabian N. Three distinct secreted aspartyl proteinases in Candida albicans. J Bacteriol. 1993 Oct;175(19):6126–6133. doi: 10.1128/jb.175.19.6126-6133.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wright R. J., Carne A., Hieber A. D., Lamont I. L., Emerson G. W., Sullivan P. A. A second gene for a secreted aspartate proteinase in Candida albicans. J Bacteriol. 1992 Dec;174(23):7848–7853. doi: 10.1128/jb.174.23.7848-7853.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wu T., Samaranayake L. P., Cao B. Y., Wang J. In-vitro proteinase production by oral Candida albicans isolates from individuals with and without HIV infection and its attenuation by antimycotic agents. J Med Microbiol. 1996 Apr;44(4):311–316. doi: 10.1099/00222615-44-4-311. [DOI] [PubMed] [Google Scholar]
  57. el-Maghrabi E. A., Dixon D. M., Burnett J. W. Characterization of Candida albicans epidermolytic proteases and their role in yeast-cell adherence to keratinocytes. Clin Exp Dermatol. 1990 May;15(3):183–191. doi: 10.1111/j.1365-2230.1990.tb02069.x. [DOI] [PubMed] [Google Scholar]

Articles from Infection and Immunity are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES