Abstract
The molecular basis for the binding of Mycobacterium tuberculosis to nonphagocytic cells, which are readily infected in vitro, and the in vivo significance of this interaction are incompletely understood. Of six cell types tested, we found that only two, Chinese hamster ovary (CHO) fibroblasts and primary porcine aortic endothelial cells, were able to bind M. tuberculosis H37Rv efficiently in vitro. Binding to both CHO and endothelial cells was markedly (three- to fivefold) enhanced by 10 to 20% human or bovine serum, suggesting that the bacteria were coated by a serum opsonin. Preincubation with individual candidate opsonins revealed that recombinant human mannose-binding protein (rMBP), fibronectin, and transferrin were each able to enhance binding threefold. Preincubation of bacteria in serum depleted of mannan-binding lectins or in genetic MBP-deficient serum resulted in enhancements that were only approximately 60 and 58%, respectively, of that produced by preincubation in control serum. In contrast, serum depleted of fibronectin or transferrin retained its opsonizing capacity, suggesting that the latter two are not significant opsonins in whole serum. Binding of M. tuberculosis and Mycobacterium smegmatis to both CHO and endothelial cells in the presence or absence of serum was blocked (60 to 70%) by a monoclonal antibody, MAb 1D1, selected for recognition of intact bacilli. The 1D1 antigen was purified from mycobacterial cell walls and chemically identified as a polar phosphatidylinositol mannoside (PIM). Latex beads coated with purified 1D1 antigen bound to CHO cells, which was enhanced threefold by serum and abolished by periodate treatment, suggesting a requirement for the PIM mannoses in opsonic adhesion. This was likely mediated, at least in part, by serum MBP, as rMBP bound strongly to 1D1 antigen in both thin-layer chromatography overlay and plate binding assays, the latter in a mannan-inhibitable manner. This is the first demonstration that mycobacterial PIMs can function as adhesins for binding to nonphagocytic cells, both directly and after opsonization with serum proteins, including MBP.
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Armstrong J. A., Hart P. D. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. Reversal of the usual nonfusion pattern and observations on bacterial survival. J Exp Med. 1975 Jul 1;142(1):1–16. doi: 10.1084/jem.142.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Band A. H., Bhattacharya A., Talwar G. P. Lack of Mycobacterium leprae-specific uptake in Schwann cells. Int J Lepr Other Mycobact Dis. 1986 Mar;54(1):71–78. [PubMed] [Google Scholar]
- Bermudez L. E., Goodman J. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect Immun. 1996 Apr;64(4):1400–1406. doi: 10.1128/iai.64.4.1400-1406.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bermudez L. E., Shelton K., Young L. S. Comparison of the ability of Mycobacterium avium, M. smegmatis and M. tuberculosis to invade and replicate within HEp-2 epithelial cells. Tuber Lung Dis. 1995 Jun;76(3):240–247. doi: 10.1016/s0962-8479(05)80012-7. [DOI] [PubMed] [Google Scholar]
- Bermudez L. E., Young L. S. Factors affecting invasion of HT-29 and HEp-2 epithelial cells by organisms of the Mycobacterium avium complex. Infect Immun. 1994 May;62(5):2021–2026. doi: 10.1128/iai.62.5.2021-2026.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bloom B. R., Murray C. J. Tuberculosis: commentary on a reemergent killer. Science. 1992 Aug 21;257(5073):1055–1064. doi: 10.1126/science.257.5073.1055. [DOI] [PubMed] [Google Scholar]
- Chroneos Z. C., Abdolrasulnia R., Whitsett J. A., Rice W. R., Shepherd V. L. Purification of a cell-surface receptor for surfactant protein A. J Biol Chem. 1996 Jul 5;271(27):16375–16383. doi: 10.1074/jbc.271.27.16375. [DOI] [PubMed] [Google Scholar]
- Cywes C., Godenir N. L., Hoppe H. C., Scholle R. R., Steyn L. M., Kirsch R. E., Ehlers M. R. Nonopsonic binding of Mycobacterium tuberculosis to human complement receptor type 3 expressed in Chinese hamster ovary cells. Infect Immun. 1996 Dec;64(12):5373–5383. doi: 10.1128/iai.64.12.5373-5383.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Downing J. F., Pasula R., Wright J. R., Twigg H. L., 3rd, Martin W. J., 2nd Surfactant protein a promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4848–4852. doi: 10.1073/pnas.92.11.4848. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Drickamer K., Taylor M. E. Biology of animal lectins. Annu Rev Cell Biol. 1993;9:237–264. doi: 10.1146/annurev.cb.09.110193.001321. [DOI] [PubMed] [Google Scholar]
- Falkow S., Isberg R. R., Portnoy D. A. The interaction of bacteria with mammalian cells. Annu Rev Cell Biol. 1992;8:333–363. doi: 10.1146/annurev.cb.08.110192.002001. [DOI] [PubMed] [Google Scholar]
- Feizi T., Stoll M. S., Yuen C. T., Chai W., Lawson A. M. Neoglycolipids: probes of oligosaccharide structure, antigenicity, and function. Methods Enzymol. 1994;230:484–519. doi: 10.1016/0076-6879(94)30030-5. [DOI] [PubMed] [Google Scholar]
- Fenton M. J., Vermeulen M. W. Immunopathology of tuberculosis: roles of macrophages and monocytes. Infect Immun. 1996 Mar;64(3):683–690. doi: 10.1128/iai.64.3.683-690.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer L. J., Quinn F. D., White E. H., King C. H. Intracellular growth and cytotoxicity of Mycobacterium haemophilum in a human epithelial cell line (Hec-1-B). Infect Immun. 1996 Jan;64(1):269–276. doi: 10.1128/iai.64.1.269-276.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garred P., Harboe M., Oettinger T., Koch C., Svejgaard A. Dual role of mannan-binding protein in infections: another case of heterosis? Eur J Immunogenet. 1994 Apr;21(2):125–131. doi: 10.1111/j.1744-313x.1994.tb00183.x. [DOI] [PubMed] [Google Scholar]
- Hirsch C. S., Ellner J. J., Russell D. G., Rich E. A. Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J Immunol. 1994 Jan 15;152(2):743–753. [PubMed] [Google Scholar]
- Holmskov U., Malhotra R., Sim R. B., Jensenius J. C. Collectins: collagenous C-type lectins of the innate immune defense system. Immunol Today. 1994 Feb;15(2):67–74. doi: 10.1016/0167-5699(94)90136-8. [DOI] [PubMed] [Google Scholar]
- Hunter S. W., Brennan P. J. Evidence for the presence of a phosphatidylinositol anchor on the lipoarabinomannan and lipomannan of Mycobacterium tuberculosis. J Biol Chem. 1990 Jun 5;265(16):9272–9279. [PubMed] [Google Scholar]
- Ilangumaran S., Arni S., Poincelet M., Theler J. M., Brennan P. J., Nasir-ud-Din, Hoessli D. C. Integration of mycobacterial lipoarabinomannans into glycosylphosphatidylinositol-rich domains of lymphomonocytic cell plasma membranes. J Immunol. 1995 Aug 1;155(3):1334–1342. [PubMed] [Google Scholar]
- Isberg R. R. Discrimination between intracellular uptake and surface adhesion of bacterial pathogens. Science. 1991 May 17;252(5008):934–938. doi: 10.1126/science.1674624. [DOI] [PubMed] [Google Scholar]
- Kuroda K., Brown E. J., Telle W. B., Russell D. G., Ratliff T. L. Characterization of the internalization of bacillus Calmette-Guerin by human bladder tumor cells. J Clin Invest. 1993 Jan;91(1):69–76. doi: 10.1172/JCI116202. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Laqueyrerie A., Militzer P., Romain F., Eiglmeier K., Cole S., Marchal G. Cloning, sequencing, and expression of the apa gene coding for the Mycobacterium tuberculosis 45/47-kilodalton secreted antigen complex. Infect Immun. 1995 Oct;63(10):4003–4010. doi: 10.1128/iai.63.10.4003-4010.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Madsen H. O., Garred P., Kurtzhals J. A., Lamm L. U., Ryder L. P., Thiel S., Svejgaard A. A new frequent allele is the missing link in the structural polymorphism of the human mannan-binding protein. Immunogenetics. 1994;40(1):37–44. doi: 10.1007/BF00163962. [DOI] [PubMed] [Google Scholar]
- McDonough K. A., Kress Y. Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis. Infect Immun. 1995 Dec;63(12):4802–4811. doi: 10.1128/iai.63.12.4802-4811.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mehta P. K., King C. H., White E. H., Murtagh J. J., Jr, Quinn F. D. Comparison of in vitro models for the study of Mycobacterium tuberculosis invasion and intracellular replication. Infect Immun. 1996 Jul;64(7):2673–2679. doi: 10.1128/iai.64.7.2673-2679.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Melancon-Kaplan J., Hunter S. W., McNeil M., Stewart C., Modlin R. L., Rea T. H., Convit J., Salgame P., Mehra V., Bloom B. R. Immunological significance of Mycobacterium leprae cell walls. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1917–1921. doi: 10.1073/pnas.85.6.1917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- O'Shannessy D. J. Antibodies biotinylated via sugar moieties. Methods Enzymol. 1990;184:162–166. doi: 10.1016/0076-6879(90)84270-q. [DOI] [PubMed] [Google Scholar]
- Ortalo-Magné A., Andersen A. B., Daffé M. The outermost capsular arabinomannans and other mannoconjugates of virulent and avirulent tubercle bacilli. Microbiology. 1996 Apr;142(Pt 4):927–935. doi: 10.1099/00221287-142-4-927. [DOI] [PubMed] [Google Scholar]
- Ortalo-Magné A., Dupont M. A., Lemassu A., Andersen A. B., Gounon P., Daffé M. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology. 1995 Jul;141(Pt 7):1609–1620. doi: 10.1099/13500872-141-7-1609. [DOI] [PubMed] [Google Scholar]
- Ortalo-Magné A., Lemassu A., Lanéelle M. A., Bardou F., Silve G., Gounon P., Marchal G., Daffé M. Identification of the surface-exposed lipids on the cell envelopes of Mycobacterium tuberculosis and other mycobacterial species. J Bacteriol. 1996 Jan;178(2):456–461. doi: 10.1128/jb.178.2.456-461.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramakrishnan L., Falkow S. Mycobacterium marinum persists in cultured mammalian cells in a temperature-restricted fashion. Infect Immun. 1994 Aug;62(8):3222–3229. doi: 10.1128/iai.62.8.3222-3229.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SHEPARD C. C. Growth characteristics of tubercle bacilli and certain other mycobacteria in HeLa cells. J Exp Med. 1957 Jan 1;105(1):39–48. doi: 10.1084/jem.105.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlesinger L. S., Bellinger-Kawahara C. G., Payne N. R., Horwitz M. A. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J Immunol. 1990 Apr 1;144(7):2771–2780. [PubMed] [Google Scholar]
- Schlesinger L. S. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J Immunol. 1993 Apr 1;150(7):2920–2930. [PubMed] [Google Scholar]
- Schnaar R. L., Needham L. K. Thin-layer chromatography of glycosphingolipids. Methods Enzymol. 1994;230:371–389. doi: 10.1016/0076-6879(94)30025-9. [DOI] [PubMed] [Google Scholar]
- Schorey J. S., Li Q., McCourt D. W., Bong-Mastek M., Clark-Curtiss J. E., Ratliff T. L., Brown E. J. A Mycobacterium leprae gene encoding a fibronectin binding protein is used for efficient invasion of epithelial cells and Schwann cells. Infect Immun. 1995 Jul;63(7):2652–2657. doi: 10.1128/iai.63.7.2652-2657.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stokes R. W., Haidl I. D., Jefferies W. A., Speert D. P. Mycobacteria-macrophage interactions. Macrophage phenotype determines the nonopsonic binding of Mycobacterium tuberculosis to murine macrophages. J Immunol. 1993 Dec 15;151(12):7067–7076. [PubMed] [Google Scholar]
- Stokes R. W., Speert D. P. Lipoarabinomannan inhibits nonopsonic binding of Mycobacterium tuberculosis to murine macrophages. J Immunol. 1995 Aug 1;155(3):1361–1369. [PubMed] [Google Scholar]
- Super M., Ezekowitz R. A. The role of mannose-binding proteins in host defense. Infect Agents Dis. 1992 Aug;1(4):194–199. [PubMed] [Google Scholar]
- Tsai C. M., Frasch C. E. A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem. 1982 Jan 1;119(1):115–119. doi: 10.1016/0003-2697(82)90673-x. [DOI] [PubMed] [Google Scholar]
- Young D., Lathigra R., Hendrix R., Sweetser D., Young R. A. Stress proteins are immune targets in leprosy and tuberculosis. Proc Natl Acad Sci U S A. 1988 Jun;85(12):4267–4270. doi: 10.1073/pnas.85.12.4267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zilla P., Fasol R., Dudeck U., Siedler S., Preiss P., Fischlein T., Müller-Glauser W., Baitella G., Sanan D., Odell J. In situ cannulation, microgrid follow-up and low-density plating provide first passage endothelial cell masscultures for in vitro lining. J Vasc Surg. 1990 Aug;12(2):180–189. [PubMed] [Google Scholar]