Skip to main content
Sexually Transmitted Infections logoLink to Sexually Transmitted Infections
. 1998 Apr;74(2):101–109. doi: 10.1136/sti.74.2.101

Molecular events in uterine cervical cancer

S A Southern, C S Herrington
PMCID: PMC1758096  PMID: 9634321

Abstract

OBJECTIVE: To review the literature regarding the molecular events which occur in the development of uterine cervical cancer, with particular reference to human papillomavirus (HPV) infection. METHODOLOGY: Bibliographic searches of Medline and the ISI citation databases using appropriate keywords, including the following: papillomavirus, cervix, pathology, cyclin, chromosome, heterozygosity, telomerase, smoking, hormones, HLA, immune response, HIV, HSV, EBV. CONCLUSIONS: It has become clear that most cervical neoplasia, whether intraepithelial or invasive, is attributable in part to HPV infection. However, HPV infection alone is not sufficient, and, in a small proportion of cases, may not be necessary for malignant transformation. There is increasing evidence that HPV gene products interfere with cell cycle control leading to secondary accumulation of small and large scale genetic abnormalities. This may explain the association of viral persistence with lesion progression but, in many patients, secondary factors, such as smoking and immune response, are clearly important. However, the mechanisms involved in the interaction between HPV and host factors are poorly understood. 




Full Text

The Full Text of this article is available as a PDF (137.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeler V. M., Holm R., Nesland J. M., Kjørstad K. E. Small cell carcinoma of the cervix. A clinicopathologic study of 26 patients. Cancer. 1994 Feb 1;73(3):672–677. doi: 10.1002/1097-0142(19940201)73:3<672::aid-cncr2820730328>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  2. Anderson S., Shera K., Ihle J., Billman L., Goff B., Greer B., Tamimi H., McDougall J., Klingelhutz A. Telomerase activation in cervical cancer. Am J Pathol. 1997 Jul;151(1):25–31. [PMC free article] [PubMed] [Google Scholar]
  3. Antinore M. J., Birrer M. J., Patel D., Nader L., McCance D. J. The human papillomavirus type 16 E7 gene product interacts with and trans-activates the AP1 family of transcription factors. EMBO J. 1996 Apr 15;15(8):1950–1960. [PMC free article] [PubMed] [Google Scholar]
  4. Apple R. J., Erlich H. A., Klitz W., Manos M. M., Becker T. M., Wheeler C. M. HLA DR-DQ associations with cervical carcinoma show papillomavirus-type specificity. Nat Genet. 1994 Feb;6(2):157–162. doi: 10.1038/ng0294-157. [DOI] [PubMed] [Google Scholar]
  5. Arbeit J. M., Münger K., Howley P. M., Hanahan D. Progressive squamous epithelial neoplasia in K14-human papillomavirus type 16 transgenic mice. J Virol. 1994 Jul;68(7):4358–4368. doi: 10.1128/jvi.68.7.4358-4368.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Atkin N. B. Cytogenetics of carcinoma of the cervix uteri: a review. Cancer Genet Cytogenet. 1997 May;95(1):33–39. doi: 10.1016/s0165-4608(97)83452-8. [DOI] [PubMed] [Google Scholar]
  7. Aziz D. C., Ferré F., Robitaille J., Ferenczy A. Human papillomavirus testing in the clinical laboratory. Part I: squamous lesions of the cervix. J Gynecol Surg. 1993 Spring;9(1):1–7. doi: 10.1089/gyn.1993.9.1. [DOI] [PubMed] [Google Scholar]
  8. Bartholomew J. S., Glenville S., Sarkar S., Burt D. J., Stanley M. A., Ruiz-Cabello F., Chengang J., Garrido F., Stern P. L. Integration of high-risk human papillomavirus DNA is linked to the down-regulation of class I human leukocyte antigens by steroid hormones in cervical tumor cells. Cancer Res. 1997 Mar 1;57(5):937–942. [PubMed] [Google Scholar]
  9. Berumen J., Casas L., Segura E., Amezcua J. L., Garcia-Carranca A. Genome amplification of human papillomavirus types 16 and 18 in cervical carcinomas is related to the retention of E1/E2 genes. Int J Cancer. 1994 Mar 1;56(5):640–645. doi: 10.1002/ijc.2910560506. [DOI] [PubMed] [Google Scholar]
  10. Berumen J., Unger E. R., Casas L., Figueroa P. Amplification of human papillomavirus types 16 and 18 in invasive cervical cancer. Hum Pathol. 1995 Jun;26(6):676–681. doi: 10.1016/0046-8177(95)90175-2. [DOI] [PubMed] [Google Scholar]
  11. Bethwaite P. B., Koreth J., Herrington C. S., McGee J. O. Loss of heterozygosity occurs at the D11S29 locus on chromosome 11q23 in invasive cervical carcinoma. Br J Cancer. 1995 Apr;71(4):814–818. doi: 10.1038/bjc.1995.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bosch F. X., Manos M. M., Muñoz N., Sherman M., Jansen A. M., Peto J., Schiffman M. H., Moreno V., Kurman R., Shah K. V. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst. 1995 Jun 7;87(11):796–802. doi: 10.1093/jnci/87.11.796. [DOI] [PubMed] [Google Scholar]
  13. Bosch F. X., Schwarz E., Boukamp P., Fusenig N. E., Bartsch D., zur Hausen H. Suppression in vivo of human papillomavirus type 18 E6-E7 gene expression in nontumorigenic HeLa X fibroblast hybrid cells. J Virol. 1990 Oct;64(10):4743–4754. doi: 10.1128/jvi.64.10.4743-4754.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Braun L., Dürst M., Mikumo R., Crowley A., Robinson M. Regulation of growth and gene expression in human papillomavirus-transformed keratinocytes by transforming growth factor-beta: implications for the control of papillomavirus infection. Mol Carcinog. 1992;6(2):100–111. doi: 10.1002/mc.2940060205. [DOI] [PubMed] [Google Scholar]
  15. Burger M. P., Hollema H., Pieters W. J., Schröder F. P., Quint W. G. Epidemiological evidence of cervical intraepithelial neoplasia without the presence of human papillomavirus. Br J Cancer. 1996 Mar;73(6):831–836. doi: 10.1038/bjc.1996.146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Busby-Earle R. M., Steel C. M., Bird C. C. Cervical carcinoma: low frequency of allele loss at loci implicated in other common malignancies. Br J Cancer. 1993 Jan;67(1):71–75. doi: 10.1038/bjc.1993.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Chan S. Y., Delius H., Halpern A. L., Bernard H. U. Analysis of genomic sequences of 95 papillomavirus types: uniting typing, phylogeny, and taxonomy. J Virol. 1995 May;69(5):3074–3083. doi: 10.1128/jvi.69.5.3074-3083.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Choo K. B., Pan C. C., Han S. H. Integration of human papillomavirus type 16 into cellular DNA of cervical carcinoma: preferential deletion of the E2 gene and invariable retention of the long control region and the E6/E7 open reading frames. Virology. 1987 Nov;161(1):259–261. doi: 10.1016/0042-6822(87)90195-4. [DOI] [PubMed] [Google Scholar]
  19. Connor M. E., Stern P. L. Loss of MHC class-I expression in cervical carcinomas. Int J Cancer. 1990 Dec 15;46(6):1029–1034. doi: 10.1002/ijc.2910460614. [DOI] [PubMed] [Google Scholar]
  20. Cooper K., Herrington C. S., Lo E. S., Evans M. F., McGee J. O. Integration of human papillomavirus types 16 and 18 in cervical adenocarcinoma. J Clin Pathol. 1992 May;45(5):382–384. doi: 10.1136/jcp.45.5.382. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Cordon-Cardo C. Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J Pathol. 1995 Sep;147(3):545–560. [PMC free article] [PubMed] [Google Scholar]
  22. Coussens L. M., Hanahan D., Arbeit J. M. Genetic predisposition and parameters of malignant progression in K14-HPV16 transgenic mice. Am J Pathol. 1996 Dec;149(6):1899–1917. [PMC free article] [PubMed] [Google Scholar]
  23. Crook T., Morgenstern J. P., Crawford L., Banks L. Continued expression of HPV-16 E7 protein is required for maintenance of the transformed phenotype of cells co-transformed by HPV-16 plus EJ-ras. EMBO J. 1989 Feb;8(2):513–519. doi: 10.1002/j.1460-2075.1989.tb03405.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Crook T., Vousden K. H. Properties of p53 mutations detected in primary and secondary cervical cancers suggest mechanisms of metastasis and involvement of environmental carcinogens. EMBO J. 1992 Nov;11(11):3935–3940. doi: 10.1002/j.1460-2075.1992.tb05487.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Crook T., Wrede D., Tidy J. A., Mason W. P., Evans D. J., Vousden K. H. Clonal p53 mutation in primary cervical cancer: association with human-papillomavirus-negative tumours. Lancet. 1992 May 2;339(8801):1070–1073. doi: 10.1016/0140-6736(92)90662-m. [DOI] [PubMed] [Google Scholar]
  26. Crook T., Wrede D., Vousden K. H. p53 point mutation in HPV negative human cervical carcinoma cell lines. Oncogene. 1991 May;6(5):873–875. [PubMed] [Google Scholar]
  27. Di Leonardo A., Khan S. H., Linke S. P., Greco V., Seidita G., Wahl G. M. DNA rereplication in the presence of mitotic spindle inhibitors in human and mouse fibroblasts lacking either p53 or pRb function. Cancer Res. 1997 Mar 15;57(6):1013–1019. [PubMed] [Google Scholar]
  28. Doorbar J., Ely S., Sterling J., McLean C., Crawford L. Specific interaction between HPV-16 E1-E4 and cytokeratins results in collapse of the epithelial cell intermediate filament network. Nature. 1991 Aug 29;352(6338):824–827. doi: 10.1038/352824a0. [DOI] [PubMed] [Google Scholar]
  29. Duggan M. A., McGregor S. E., Benoit J. L., Inoue M., Nation J. G., Stuart G. C. The human papillomavirus status of invasive cervical adenocarcinoma: a clinicopathological and outcome analysis. Hum Pathol. 1995 Mar;26(3):319–325. doi: 10.1016/0046-8177(95)90065-9. [DOI] [PubMed] [Google Scholar]
  30. Dyson N., Howley P. M., Münger K., Harlow E. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science. 1989 Feb 17;243(4893):934–937. doi: 10.1126/science.2537532. [DOI] [PubMed] [Google Scholar]
  31. Erickson C. K., Burnam W. L. Cholinergic alteration of ethanol-induced sleep and death in mice. Agents Actions. 1971 Apr;2(1):8–13. doi: 10.1007/BF01965373. [DOI] [PubMed] [Google Scholar]
  32. Frattini M. G., Hurst S. D., Lim H. B., Swaminathan S., Laimins L. A. Abrogation of a mitotic checkpoint by E2 proteins from oncogenic human papillomaviruses correlates with increased turnover of the p53 tumor suppressor protein. EMBO J. 1997 Jan 15;16(2):318–331. doi: 10.1093/emboj/16.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Frattini M. G., Lim H. B., Laimins L. A. In vitro synthesis of oncogenic human papillomaviruses requires episomal genomes for differentiation-dependent late expression. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3062–3067. doi: 10.1073/pnas.93.7.3062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Fujita M., Inoue M., Tanizawa O., Iwamoto S., Enomoto T. Alterations of the p53 gene in human primary cervical carcinoma with and without human papillomavirus infection. Cancer Res. 1992 Oct 1;52(19):5323–5328. [PubMed] [Google Scholar]
  35. Glew S. S., Connor M. E., Snijders P. J., Stanbridge C. M., Buckley C. H., Walboomers J. M., Meijer C. J., Stern P. L. HLA expression in pre-invasive cervical neoplasia in relation to human papilloma virus infection. Eur J Cancer. 1993;29A(14):1963–1970. doi: 10.1016/0959-8049(93)90453-m. [DOI] [PubMed] [Google Scholar]
  36. Glew S. S., Duggan-Keen M., Cabrera T., Stern P. L. HLA class II antigen expression in human papillomavirus-associated cervical cancer. Cancer Res. 1992 Jul 15;52(14):4009–4016. [PubMed] [Google Scholar]
  37. Gloss B., Bernard H. U., Seedorf K., Klock G. The upstream regulatory region of the human papilloma virus-16 contains an E2 protein-independent enhancer which is specific for cervical carcinoma cells and regulated by glucocorticoid hormones. EMBO J. 1987 Dec 1;6(12):3735–3743. doi: 10.1002/j.1460-2075.1987.tb02708.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Graña X., Reddy E. P. Cell cycle control in mammalian cells: role of cyclins, cyclin dependent kinases (CDKs), growth suppressor genes and cyclin-dependent kinase inhibitors (CKIs). Oncogene. 1995 Jul 20;11(2):211–219. [PubMed] [Google Scholar]
  39. Götz C., Wagner P., Issinger O. G., Montenarh M. p21WAF1/CIP1 interacts with protein kinase CK2. Oncogene. 1996 Jul 18;13(2):391–398. [PubMed] [Google Scholar]
  40. Hall P. A., Lane D. P. Genetics of growth arrest and cell death: key determinants of tissue homeostasis. Eur J Cancer. 1994;30A(13):2001–2012. doi: 10.1016/0959-8049(94)00394-k. [DOI] [PubMed] [Google Scholar]
  41. Hampton G. M., Larson A. A., Baergen R. N., Sommers R. L., Kern S., Cavenee W. K. Simultaneous assessment of loss of heterozygosity at multiple microsatellite loci using semi-automated fluorescence-based detection: subregional mapping of chromosome 4 in cervical carcinoma. Proc Natl Acad Sci U S A. 1996 Jun 25;93(13):6704–6709. doi: 10.1073/pnas.93.13.6704. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Hampton G. M., Penny L. A., Baergen R. N., Larson A., Brewer C., Liao S., Busby-Earle R. M., Williams A. W., Steel C. M., Bird C. C. Loss of heterozygosity in cervical carcinoma: subchromosomal localization of a putative tumor-suppressor gene to chromosome 11q22-q24. Proc Natl Acad Sci U S A. 1994 Jul 19;91(15):6953–6957. doi: 10.1073/pnas.91.15.6953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hawley-Nelson P., Vousden K. H., Hubbert N. L., Lowy D. R., Schiller J. T. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J. 1989 Dec 1;8(12):3905–3910. doi: 10.1002/j.1460-2075.1989.tb08570.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Herrington C. S. Control of HPV replication: implications for squamous neoplasia. J Pathol. 1996 Mar;178(3):237–238. doi: 10.1002/(SICI)1096-9896(199603)178:3<237::AID-PATH518>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  45. Herrington C. S. Human papillomaviruses and cervical neoplasia. I. Classification, virology, pathology, and epidemiology. J Clin Pathol. 1994 Dec;47(12):1066–1072. doi: 10.1136/jcp.47.12.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Herrington C. S. Human papillomaviruses and cervical neoplasia. II. Interaction of HPV with other factors. J Clin Pathol. 1995 Jan;48(1):1–6. doi: 10.1136/jcp.48.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Heselmeyer K., Schröck E., du Manoir S., Blegen H., Shah K., Steinbeck R., Auer G., Ried T. Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):479–484. doi: 10.1073/pnas.93.1.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Higgins G. D., Phillips G. E., Smith L. A., Uzelin D. M., Burrell C. J. High prevalence of human papillomavirus transcripts in all grades of cervical intraepithelial glandular neoplasia. Cancer. 1992 Jul 1;70(1):136–146. doi: 10.1002/1097-0142(19920701)70:1<136::aid-cncr2820700123>3.0.co;2-2. [DOI] [PubMed] [Google Scholar]
  49. Hildesheim A., Mann V., Brinton L. A., Szklo M., Reeves W. C., Rawls W. E. Herpes simplex virus type 2: a possible interaction with human papillomavirus types 16/18 in the development of invasive cervical cancer. Int J Cancer. 1991 Sep 30;49(3):335–340. doi: 10.1002/ijc.2910490304. [DOI] [PubMed] [Google Scholar]
  50. Ho G. Y., Burk R. D., Klein S., Kadish A. S., Chang C. J., Palan P., Basu J., Tachezy R., Lewis R., Romney S. Persistent genital human papillomavirus infection as a risk factor for persistent cervical dysplasia. J Natl Cancer Inst. 1995 Sep 20;87(18):1365–1371. doi: 10.1093/jnci/87.18.1365. [DOI] [PubMed] [Google Scholar]
  51. Hubbert N. L., Sedman S. A., Schiller J. T. Human papillomavirus type 16 E6 increases the degradation rate of p53 in human keratinocytes. J Virol. 1992 Oct;66(10):6237–6241. doi: 10.1128/jvi.66.10.6237-6241.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Hunter T., Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell. 1994 Nov 18;79(4):573–582. doi: 10.1016/0092-8674(94)90543-6. [DOI] [PubMed] [Google Scholar]
  53. Iwasaka T., Yokoyama M., Hayashi Y., Sugimori H. Combined herpes simplex virus type 2 and human papillomavirus type 16 or 18 deoxyribonucleic acid leads to oncogenic transformation. Am J Obstet Gynecol. 1988 Nov;159(5):1251–1255. doi: 10.1016/0002-9378(88)90459-0. [DOI] [PubMed] [Google Scholar]
  54. Jacobs M. V., Snijders P. J., van den Brule A. J., Helmerhorst T. J., Meijer C. J., Walboomers J. M. A general primer GP5+/GP6(+)-mediated PCR-enzyme immunoassay method for rapid detection of 14 high-risk and 6 low-risk human papillomavirus genotypes in cervical scrapings. J Clin Microbiol. 1997 Mar;35(3):791–795. doi: 10.1128/jcm.35.3.791-795.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Jeon S., Lambert P. F. Integration of human papillomavirus type 16 DNA into the human genome leads to increased stability of E6 and E7 mRNAs: implications for cervical carcinogenesis. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1654–1658. doi: 10.1073/pnas.92.5.1654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Johnson J. C., Burnett A. F., Willet G. D., Young M. A., Doniger J. High frequency of latent and clinical human papillomavirus cervical infections in immunocompromised human immunodeficiency virus-infected women. Obstet Gynecol. 1992 Mar;79(3):321–327. doi: 10.1097/00006250-199203000-00001. [DOI] [PubMed] [Google Scholar]
  57. Jones C. Cervical cancer: is herpes simplex virus type II a cofactor? Clin Microbiol Rev. 1995 Oct;8(4):549–556. doi: 10.1128/cmr.8.4.549. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Jones M. H., Koi S., Fujimoto I., Hasumi K., Kato K., Nakamura Y. Allelotype of uterine cancer by analysis of RFLP and microsatellite polymorphisms: frequent loss of heterozygosity on chromosome arms 3p, 9q, 10q, and 17p. Genes Chromosomes Cancer. 1994 Feb;9(2):119–123. doi: 10.1002/gcc.2870090207. [DOI] [PubMed] [Google Scholar]
  59. Kaelbling M., Burk R. D., Atkin N. B., Johnson A. B., Klinger H. P. Loss of heterozygosity on chromosome 17p and mutant p53 in HPV-negative cervical carcinomas. Lancet. 1992 Jul 18;340(8812):140–142. doi: 10.1016/0140-6736(92)93214-8. [DOI] [PubMed] [Google Scholar]
  60. Karlsen F., Rabbitts P. H., Sundresan V., Hagmar B. PCR-RFLP studies on chromosome 3p in formaldehyde-fixed, paraffin-embedded cervical cancer tissues. Int J Cancer. 1994 Sep 15;58(6):787–792. doi: 10.1002/ijc.2910580606. [DOI] [PubMed] [Google Scholar]
  61. Kaur P., McDougall J. K., Cone R. Immortalization of primary human epithelial cells by cloned cervical carcinoma DNA containing human papillomavirus type 16 E6/E7 open reading frames. J Gen Virol. 1989 May;70(Pt 5):1261–1266. doi: 10.1099/0022-1317-70-5-1261. [DOI] [PubMed] [Google Scholar]
  62. Kessis T. D., Connolly D. C., Hedrick L., Cho K. R. Expression of HPV16 E6 or E7 increases integration of foreign DNA. Oncogene. 1996 Jul 18;13(2):427–431. [PubMed] [Google Scholar]
  63. Kim N. W., Piatyszek M. A., Prowse K. R., Harley C. B., West M. D., Ho P. L., Coviello G. M., Wright W. E., Weinrich S. L., Shay J. W. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994 Dec 23;266(5193):2011–2015. doi: 10.1126/science.7605428. [DOI] [PubMed] [Google Scholar]
  64. King R. W., Jackson P. K., Kirschner M. W. Mitosis in transition. Cell. 1994 Nov 18;79(4):563–571. doi: 10.1016/0092-8674(94)90542-8. [DOI] [PubMed] [Google Scholar]
  65. Klingelhutz A. J., Foster S. A., McDougall J. K. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature. 1996 Mar 7;380(6569):79–82. doi: 10.1038/380079a0. [DOI] [PubMed] [Google Scholar]
  66. Kohno T., Takayama H., Hamaguchi M., Takano H., Yamaguchi N., Tsuda H., Hirohashi S., Vissing H., Shimizu M., Oshimura M. Deletion mapping of chromosome 3p in human uterine cervical cancer. Oncogene. 1993 Jul;8(7):1825–1832. [PubMed] [Google Scholar]
  67. Kurzrock R., Ku S., Talpaz M. Abnormalities in the PRAD1 (CYCLIN D1/BCL-1) oncogene are frequent in cervical and vulvar squamous cell carcinoma cell lines. Cancer. 1995 Jan 15;75(2):584–590. doi: 10.1002/1097-0142(19950115)75:2<584::aid-cncr2820750223>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  68. Kyo S., Klumpp D. J., Inoue M., Kanaya T., Laimins L. A. Expression of AP1 during cellular differentiation determines human papillomavirus E6/E7 expression in stratified epithelial cells. J Gen Virol. 1997 Feb;78(Pt 2):401–411. doi: 10.1099/0022-1317-78-2-401. [DOI] [PubMed] [Google Scholar]
  69. Landers R. J., O'Leary J. J., Crowley M., Healy I., Annis P., Burke L., O'Brien D., Hogan J., Kealy W. F., Lewis F. A. Epstein-Barr virus in normal, pre-malignant, and malignant lesions of the uterine cervix. J Clin Pathol. 1993 Oct;46(10):931–935. doi: 10.1136/jcp.46.10.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Larson A. A., Kern S., Sommers R. L., Yokota J., Cavenee W. K., Hampton G. M. Analysis of replication error (RER+) phenotypes in cervical carcinoma. Cancer Res. 1996 Mar 15;56(6):1426–1431. [PubMed] [Google Scholar]
  71. Leechanachai P., Banks L., Moreau F., Matlashewski G. The E5 gene from human papillomavirus type 16 is an oncogene which enhances growth factor-mediated signal transduction to the nucleus. Oncogene. 1992 Jan;7(1):19–25. [PubMed] [Google Scholar]
  72. Lorincz A. T., Reid R., Jenson A. B., Greenberg M. D., Lancaster W., Kurman R. J. Human papillomavirus infection of the cervix: relative risk associations of 15 common anogenital types. Obstet Gynecol. 1992 Mar;79(3):328–337. doi: 10.1097/00006250-199203000-00002. [DOI] [PubMed] [Google Scholar]
  73. Matlashewski G., Osborn K., Banks L., Stanley M., Crawford L. Transformation of primary human fibroblast cells with human papillomavirus type 16 DNA and EJ-ras. Int J Cancer. 1988 Aug 15;42(2):232–238. doi: 10.1002/ijc.2910420215. [DOI] [PubMed] [Google Scholar]
  74. Meyers C., Frattini M. G., Hudson J. B., Laimins L. A. Biosynthesis of human papillomavirus from a continuous cell line upon epithelial differentiation. Science. 1992 Aug 14;257(5072):971–973. doi: 10.1126/science.1323879. [DOI] [PubMed] [Google Scholar]
  75. Mitrani-Rosenbaum S., Tsvieli R., Tur-Kaspa R. Oestrogen stimulates differential transcription of human papillomavirus type 16 in SiHa cervical carcinoma cells. J Gen Virol. 1989 Aug;70(Pt 8):2227–2232. doi: 10.1099/0022-1317-70-8-2227. [DOI] [PubMed] [Google Scholar]
  76. Mittal R., Tsutsumi K., Pater A., Pater M. M. Human papillomavirus type 16 expression in cervical keratinocytes: role of progesterone and glucocorticoid hormones. Obstet Gynecol. 1993 Jan;81(1):5–12. [PubMed] [Google Scholar]
  77. Morelli A. E., Sananes C., Di Paola G., Paredes A., Fainboim L. Relationship between types of human papillomavirus and Langerhans' cells in cervical condyloma and intraepithelial neoplasia. Am J Clin Pathol. 1993 Feb;99(2):200–206. doi: 10.1093/ajcp/99.2.200. [DOI] [PubMed] [Google Scholar]
  78. Morris H. H., Gatter K. C., Sykes G., Casemore V., Mason D. Y. Langerhans' cells in human cervical epithelium: effects of wart virus infection and intraepithelial neoplasia. Br J Obstet Gynaecol. 1983 May;90(5):412–420. doi: 10.1111/j.1471-0528.1983.tb08936.x. [DOI] [PubMed] [Google Scholar]
  79. Mullokandov M. R., Kholodilov N. G., Atkin N. B., Burk R. D., Johnson A. B., Klinger H. P. Genomic alterations in cervical carcinoma: losses of chromosome heterozygosity and human papilloma virus tumor status. Cancer Res. 1996 Jan 1;56(1):197–205. [PubMed] [Google Scholar]
  80. Ngan H. Y., Tsao S. W., Liu S. S., Stanley M. Abnormal expression and mutation of p53 in cervical cancer--a study at protein, RNA and DNA levels. Genitourin Med. 1997 Feb;73(1):54–58. doi: 10.1136/sti.73.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  81. Nichols G. E., Williams M. E., Gaffey M. J., Stoler M. H. Cyclin D1 gene expression in human cervical neoplasia. Mod Pathol. 1996 Apr;9(4):418–425. [PubMed] [Google Scholar]
  82. Odunsi K., Terry G., Ho L., Bell J., Cuzick J., Ganesan T. S. Association between HLA DQB1 * 03 and cervical intra-epithelial neoplasia. Mol Med. 1995 Jan;1(2):161–171. [PMC free article] [PubMed] [Google Scholar]
  83. Pagano M., Pepperkok R., Verde F., Ansorge W., Draetta G. Cyclin A is required at two points in the human cell cycle. EMBO J. 1992 Mar;11(3):961–971. doi: 10.1002/j.1460-2075.1992.tb05135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Paquette R. L., Lee Y. Y., Wilczynski S. P., Karmakar A., Kizaki M., Miller C. W., Koeffler H. P. Mutations of p53 and human papillomavirus infection in cervical carcinoma. Cancer. 1993 Aug 15;72(4):1272–1280. doi: 10.1002/1097-0142(19930815)72:4<1272::aid-cncr2820720420>3.0.co;2-q. [DOI] [PubMed] [Google Scholar]
  85. Park S. Y., Kang Y. S., Kim B. G., Lee S. H., Lee E. D., Lee K. H., Park K. B., Lee J. H. Loss of heterozygosity on the short arm of chromosome 17 in uterine cervical carcinomas. Cancer Genet Cytogenet. 1995 Jan;79(1):74–78. doi: 10.1016/0165-4608(94)00103-i. [DOI] [PubMed] [Google Scholar]
  86. Park T. W., Richart R. M., Sun X. W., Wright T. C., Jr Association between human papillomavirus type and clonal status of cervical squamous intraepithelial lesions. J Natl Cancer Inst. 1996 Mar 20;88(6):355–358. doi: 10.1093/jnci/88.6.355. [DOI] [PubMed] [Google Scholar]
  87. Parker M. F., Arroyo G. F., Geradts J., Sabichi A. L., Park R. C., Taylor R. R., Birrer M. J. Molecular characterization of adenocarcinoma of the cervix. Gynecol Oncol. 1997 Feb;64(2):242–251. doi: 10.1006/gyno.1996.4580. [DOI] [PubMed] [Google Scholar]
  88. Popescu N. C., DiPaolo J. A. Preferential sites for viral integration on mammalian genome. Cancer Genet Cytogenet. 1989 Oct 15;42(2):157–171. doi: 10.1016/0165-4608(89)90084-8. [DOI] [PubMed] [Google Scholar]
  89. Rader J. S., Golub T. R., Hudson J. B., Patel D., Bedell M. A., Laimins L. A. In vitro differentiation of epithelial cells from cervical neoplasias resembles in vivo lesions. Oncogene. 1990 Apr;5(4):571–576. [PubMed] [Google Scholar]
  90. Rader J. S., Kamarasova T., Huettner P. C., Li L., Li Y., Gerhard D. S. Allelotyping of all chromosomal arms in invasive cervical cancer. Oncogene. 1996 Dec 19;13(12):2737–2741. [PubMed] [Google Scholar]
  91. Remmink A. J., Walboomers J. M., Helmerhorst T. J., Voorhorst F. J., Rozendaal L., Risse E. K., Meijer C. J., Kenemans P. The presence of persistent high-risk HPV genotypes in dysplastic cervical lesions is associated with progressive disease: natural history up to 36 months. Int J Cancer. 1995 May 4;61(3):306–311. doi: 10.1002/ijc.2910610305. [DOI] [PubMed] [Google Scholar]
  92. Romanczuk H., Howley P. M. Disruption of either the E1 or the E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity. Proc Natl Acad Sci U S A. 1992 Apr 1;89(7):3159–3163. doi: 10.1073/pnas.89.7.3159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  93. Samaratunga H., Cox N., Wright R. G. Human papillomavirus DNA in glandular lesions of the uterine cervix. J Clin Pathol. 1993 Aug;46(8):718–721. doi: 10.1136/jcp.46.8.718. [DOI] [PMC free article] [PubMed] [Google Scholar]
  94. Schiffman M. H., Haley N. J., Felton J. S., Andrews A. W., Kaslow R. A., Lancaster W. D., Kurman R. J., Brinton L. A., Lannom L. B., Hoffmann D. Biochemical epidemiology of cervical neoplasia: measuring cigarette smoke constituents in the cervix. Cancer Res. 1987 Jul 15;47(14):3886–3888. [PubMed] [Google Scholar]
  95. Schneider A., Koutsky L. A. Natural history and epidemiological features of genital HPV infection. IARC Sci Publ. 1992;(119):25–52. [PubMed] [Google Scholar]
  96. Schneider V., Kay S., Lee H. M. Immunosuppression as a high-risk factor in the development of condyloma acuminatum and squamous neoplasia of the cervix. Acta Cytol. 1983 May-Jun;27(3):220–224. [PubMed] [Google Scholar]
  97. Shroyer K. R. Human papillomavirus and endocervical adenocarcinoma. Hum Pathol. 1993 Feb;24(2):119–120. doi: 10.1016/0046-8177(93)90288-r. [DOI] [PubMed] [Google Scholar]
  98. Simons A. M., Phillips D. H., Coleman D. V. Damage to DNA in cervical epithelium related to smoking tobacco. BMJ. 1993 May 29;306(6890):1444–1448. doi: 10.1136/bmj.306.6890.1444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Sizemore N., Mukhtar H., Couch L. H., Howard P. C., Rorke E. A. Differential response of normal and HPV immortalized ectocervical epithelial cells to B[a]P. Carcinogenesis. 1995 Oct;16(10):2413–2418. doi: 10.1093/carcin/16.10.2413. [DOI] [PubMed] [Google Scholar]
  100. Slebos R. J., Kessis T. D., Chen A. W., Han S. M., Hedrick L., Cho K. R. Functional consequences of directed mutations in human papillomavirus E6 proteins: abrogation of p53-mediated cell cycle arrest correlates with p53 binding and degradation in vitro. Virology. 1995 Apr 1;208(1):111–120. doi: 10.1006/viro.1995.1134. [DOI] [PubMed] [Google Scholar]
  101. Solinas-Toldo S., Dürst M., Lichter P. Specific chromosomal imbalances in human papillomavirus-transfected cells during progression toward immortality. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3854–3859. doi: 10.1073/pnas.94.8.3854. [DOI] [PMC free article] [PubMed] [Google Scholar]
  102. Southern S. A., Herrington C. S. Interphase karyotypic analysis of chromosomes 11, 17 and X in invasive squamous-cell carcinoma of the cervix: morphological correlation with HPV infection. Int J Cancer. 1997 Mar 4;70(5):502–507. doi: 10.1002/(sici)1097-0215(19970304)70:5<502::aid-ijc2>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
  103. Spinillo A., Tenti P., Zappatore R., De Seta F., Silini E., Guaschino S. Langerhans' cell counts and cervical intraepithelial neoplasia in women with human immunodeficiency virus infection. Gynecol Oncol. 1993 Feb;48(2):210–213. doi: 10.1006/gyno.1993.1035. [DOI] [PubMed] [Google Scholar]
  104. Steenbergen R. D., Walboomers J. M., Meijer C. J., van der Raaij-Helmer E. M., Parker J. N., Chow L. T., Broker T. R., Snijders P. J. Transition of human papillomavirus type 16 and 18 transfected human foreskin keratinocytes towards immortality: activation of telomerase and allele losses at 3p, 10p, 11q and/or 18q. Oncogene. 1996 Sep 19;13(6):1249–1257. [PubMed] [Google Scholar]
  105. Steinmann K. E., Pei X. F., Stöppler H., Schlegel R., Schlegel R. Elevated expression and activity of mitotic regulatory proteins in human papillomavirus-immortalized keratinocytes. Oncogene. 1994 Feb;9(2):387–394. [PubMed] [Google Scholar]
  106. Stoler M. H., Rhodes C. R., Whitbeck A., Wolinsky S. M., Chow L. T., Broker T. R. Human papillomavirus type 16 and 18 gene expression in cervical neoplasias. Hum Pathol. 1992 Feb;23(2):117–128. doi: 10.1016/0046-8177(92)90232-r. [DOI] [PubMed] [Google Scholar]
  107. Stöppler M. C., Ching K., Stöppler H., Clancy K., Schlegel R., Icenogle J. Natural variants of the human papillomavirus type 16 E6 protein differ in their abilities to alter keratinocyte differentiation and to induce p53 degradation. J Virol. 1996 Oct;70(10):6987–6993. doi: 10.1128/jvi.70.10.6987-6993.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Szarewski A., Jarvis M. J., Sasieni P., Anderson M., Edwards R., Steele S. J., Guillebaud J., Cuzick J. Effect of smoking cessation on cervical lesion size. Lancet. 1996 Apr 6;347(9006):941–943. doi: 10.1016/s0140-6736(96)91417-8. [DOI] [PubMed] [Google Scholar]
  109. Tase T., Okagaki T., Clark B. A., Manias D. A., Ostrow R. S., Twiggs L. B., Faras A. J. Human papillomavirus types and localization in adenocarcinoma and adenosquamous carcinoma of the uterine cervix: a study by in situ DNA hybridization. Cancer Res. 1988 Feb 15;48(4):993–998. [PubMed] [Google Scholar]
  110. Tase T., Okagaki T., Clark B. A., Twiggs L. B., Ostrow R. S., Faras A. J. Human papillomavirus DNA in adenocarcinoma in situ, microinvasive adenocarcinoma of the uterine cervix, and coexisting cervical squamous intraepithelial neoplasia. Int J Gynecol Pathol. 1989;8(1):8–17. doi: 10.1097/00004347-198903000-00002. [DOI] [PubMed] [Google Scholar]
  111. Tommasino M., Crawford L. Human papillomavirus E6 and E7: proteins which deregulate the cell cycle. Bioessays. 1995 Jun;17(6):509–518. doi: 10.1002/bies.950170607. [DOI] [PubMed] [Google Scholar]
  112. Vernon S. D., Hart C. E., Reeves W. C., Icenogle J. P. The HIV-1 tat protein enhances E2-dependent human papillomavirus 16 transcription. Virus Res. 1993 Feb;27(2):133–145. doi: 10.1016/0168-1702(93)90077-z. [DOI] [PubMed] [Google Scholar]
  113. Waggoner S. E., Wang X. Effect of nicotine on proliferation of normal, malignant, and human papillomavirus-transformed human cervical cells. Gynecol Oncol. 1994 Oct;55(1):91–95. doi: 10.1006/gyno.1994.1254. [DOI] [PubMed] [Google Scholar]
  114. Walboomers J. M., Meijer C. J. Do HPV-negative cervical carcinomas exist? J Pathol. 1997 Mar;181(3):253–254. doi: 10.1002/(SICI)1096-9896(199703)181:3<253::AID-PATH755>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  115. Wank R., Thomssen C. High risk of squamous cell carcinoma of the cervix for women with HLA-DQw3. Nature. 1991 Aug 22;352(6337):723–725. doi: 10.1038/352723a0. [DOI] [PubMed] [Google Scholar]
  116. Werness B. A., Levine A. J., Howley P. M. Association of human papillomavirus types 16 and 18 E6 proteins with p53. Science. 1990 Apr 6;248(4951):76–79. doi: 10.1126/science.2157286. [DOI] [PubMed] [Google Scholar]
  117. Wigle D. T., Mao Y., Grace M. Re: "Smoking and cancer of the uterine cervix: hypothesis". Am J Epidemiol. 1980 Jan;111(1):125–127. doi: 10.1093/oxfordjournals.aje.a112862. [DOI] [PubMed] [Google Scholar]
  118. Wilding J., Vousden K. H., Soutter W. P., McCrea P. D., Del Buono R., Pignatelli M. E-cadherin transfection down-regulates the epidermal growth factor receptor and reverses the invasive phenotype of human papilloma virus-transfected keratinocytes. Cancer Res. 1996 Nov 15;56(22):5285–5292. [PubMed] [Google Scholar]
  119. Williams A. B., Darragh T. M., Vranizan K., Ochia C., Moss A. R., Palefsky J. M. Anal and cervical human papillomavirus infection and risk of anal and cervical epithelial abnormalities in human immunodeficiency virus-infected women. Obstet Gynecol. 1994 Feb;83(2):205–211. [PubMed] [Google Scholar]
  120. Winkelstein W., Jr Smoking and cervical cancer--current status: a review. Am J Epidemiol. 1990 Jun;131(6):945–960. doi: 10.1093/oxfordjournals.aje.a115614. [DOI] [PubMed] [Google Scholar]
  121. Winkler B., Crum C. P., Fujii T., Ferenczy A., Boon M., Braun L., Lancaster W. D., Richart R. M. Koilocytotic lesions of the cervix. The relationship of mitotic abnormalities to the presence of papillomavirus antigens and nuclear DNA content. Cancer. 1984 Mar 1;53(5):1081–1087. doi: 10.1002/1097-0142(19840301)53:5<1081::aid-cncr2820530511>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  122. Woodworth C. D., Lichti U., Simpson S., Evans C. H., DiPaolo J. A. Leukoregulin and gamma-interferon inhibit human papillomavirus type 16 gene transcription in human papillomavirus-immortalized human cervical cells. Cancer Res. 1992 Jan 15;52(2):456–463. [PubMed] [Google Scholar]
  123. Xiong Y., Kuppuswamy D., Li Y., Livanos E. M., Hixon M., White A., Beach D., Tlsty T. D. Alteration of cell cycle kinase complexes in human papillomavirus E6- and E7-expressing fibroblasts precedes neoplastic transformation. J Virol. 1996 Feb;70(2):999–1008. doi: 10.1128/jvi.70.2.999-1008.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  124. Yamada T., Manos M. M., Peto J., Greer C. E., Munoz N., Bosch F. X., Wheeler C. M. Human papillomavirus type 16 sequence variation in cervical cancers: a worldwide perspective. J Virol. 1997 Mar;71(3):2463–2472. doi: 10.1128/jvi.71.3.2463-2472.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Yang Y. F., Tsao Y. P., Yin C. S., Chen S. L., Chu T. Y. Overexpression of the proto-oncogene c-jun in association with low-risk type specific human papillomavirus infection in condyloma acuminata. J Med Virol. 1996 Apr;48(4):302–307. doi: 10.1002/(SICI)1096-9071(199604)48:4<302::AID-JMV2>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  126. Young F. I., Ward L. M., Brown L. J. Absence of human papilloma virus in cervical adenocarcinoma determined by in situ hybridisation. J Clin Pathol. 1991 Apr;44(4):340–341. doi: 10.1136/jcp.44.4.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Zerfass K., Schulze A., Spitkovsky D., Friedman V., Henglein B., Jansen-Dürr P. Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J Virol. 1995 Oct;69(10):6389–6399. doi: 10.1128/jvi.69.10.6389-6399.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  128. Zimonjic D. B., Popescu N. D., DiPaolo J. A. Chromosomal organization of viral integration sites in human papillomavirus-immortalized human keratinocyte cell lines. Cancer Genet Cytogenet. 1994 Jan;72(1):39–43. doi: 10.1016/0165-4608(94)90107-4. [DOI] [PubMed] [Google Scholar]
  129. von Knebel Doeberitz M., Rittmüller C., Aengeneyndt F., Jansen-Dürr P., Spitkovsky D. Reversible repression of papillomavirus oncogene expression in cervical carcinoma cells: consequences for the phenotype and E6-p53 and E7-pRB interactions. J Virol. 1994 May;68(5):2811–2821. doi: 10.1128/jvi.68.5.2811-2821.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  130. zur Hausen H. Intracellular surveillance of persisting viral infections. Human genital cancer results from deficient cellular control of papillomavirus gene expression. Lancet. 1986 Aug 30;2(8505):489–491. doi: 10.1016/s0140-6736(86)90360-0. [DOI] [PubMed] [Google Scholar]

Articles from Sexually Transmitted Infections are provided here courtesy of BMJ Publishing Group

RESOURCES