Abstract
BACKGROUND: Systemic sclerosis (SSc) may be complicated by pulmonary hypertension (PHT), which can occur both in the setting of fibrosing alveolitis or as lone pulmonary vascular disease. Nitric oxide (NO) is a powerful vasodilator and is produced by various cells in the respiratory tract including pulmonary vascular endothelial cells and can be measured in expired air. A study was undertaken to test the hypothesis that exhaled NO levels would be decreased in patients with SSc with PHT and to assess the utility of this measurement in discriminating between patients with and without PHT, regardless of concurrent fibrosing alveolitis. METHODS: Exhaled NO was measured with a chemiluminescence analyser in 23 patients with SSc (six with PHT, 17 subjects without) and in 67 normal individuals. Doppler echocardiography was used to assess pulmonary artery pressure in subjects with SSc, and lung function tests were performed at the same visit as NO measurements. Thin section CT scans were analysed for the presence of abnormality consistent with fibrosing alveolitis. RESULTS: Patients with SSc with PHT had a greater reduction in arterial oxygen tension (PaO2) and carbon monoxide gas transfer (TLCO) than patients with SSc without PHT. Exhaled NO was significantly higher in patients with SSc without PHT than in normal individuals, and was significantly decreased in patients with SSc with PHT (mean (SD) 20 (6) ppb) compared with 149 (19) ppb in those with SSc without PHT (mean difference 129 (95% CI 112 to 146) ppb) and 80 (7) ppb in normal individuals (mean difference 60 (95% CI 54 to 66) ppb). CONCLUSION: Exhaled NO is decreased in patients with SSc with PHT compared with both normal individuals and patients with SSc without PHT.
Full Text
The Full Text of this article is available as a PDF (128.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adnot S., Raffestin B., Eddahibi S., Braquet P., Chabrier P. E. Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J Clin Invest. 1991 Jan;87(1):155–162. doi: 10.1172/JCI114965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barer G., Emery C., Stewart A., Bee D., Howard P. Endothelial control of the pulmonary circulation in normal and chronically hypoxic rats. J Physiol. 1993 Apr;463:1–16. doi: 10.1113/jphysiol.1993.sp019581. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barnes P. J., Kharitonov S. A. Exhaled nitric oxide: a new lung function test. Thorax. 1996 Mar;51(3):233–237. doi: 10.1136/thx.51.3.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barrett M. L., Willis A. L., Vane J. R. Inhibition of platelet-derived mitogen release by nitric oxide (EDRF). Agents Actions. 1989 Jun;27(3-4):488–491. doi: 10.1007/BF01972860. [DOI] [PubMed] [Google Scholar]
- Barth P. J., Müller B., Wagner U., Bittinger A. Quantitative analysis of parenchymal and vascular alterations in NO2-induced lung injury in rats. Eur Respir J. 1995 Jul;8(7):1115–1121. doi: 10.1183/09031936.95.08071115. [DOI] [PubMed] [Google Scholar]
- Bath P. M., Hassall D. G., Gladwin A. M., Palmer R. M., Martin J. F. Nitric oxide and prostacyclin. Divergence of inhibitory effects on monocyte chemotaxis and adhesion to endothelium in vitro. Arterioscler Thromb. 1991 Mar-Apr;11(2):254–260. doi: 10.1161/01.atv.11.2.254. [DOI] [PubMed] [Google Scholar]
- Beckman J. S., Beckman T. W., Chen J., Marshall P. A., Freeman B. A. Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A. 1990 Feb;87(4):1620–1624. doi: 10.1073/pnas.87.4.1620. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bernhardt J., Tschudi M. R., Dohi Y., Gut I., Urwyler B., Bühler F. R., Lüscher T. F. Release of nitric oxide from human vascular smooth muscle cells. Biochem Biophys Res Commun. 1991 Oct 31;180(2):907–912. doi: 10.1016/s0006-291x(05)81151-9. [DOI] [PubMed] [Google Scholar]
- Borland C., Cox Y., Higenbottam T. Measurement of exhaled nitric oxide in man. Thorax. 1993 Nov;48(11):1160–1162. doi: 10.1136/thx.48.11.1160. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brecker S. J., Xiao H. B., Stojnic B. B., Mbaissouroum M., Gibson D. G. Assessment of the peak tricuspid regurgitant velocity from the dynamics of retrograde flow. Int J Cardiol. 1992 Mar;34(3):267–271. doi: 10.1016/0167-5273(92)90023-v. [DOI] [PubMed] [Google Scholar]
- Claman H. N., Giorno R. C., Seibold J. R. Endothelial and fibroblastic activation in scleroderma. The myth of the "uninvolved skin". Arthritis Rheum. 1991 Dec;34(12):1495–1501. doi: 10.1002/art.1780341204. [DOI] [PubMed] [Google Scholar]
- Dinh-Xuan A. T. Endothelial modulation of pulmonary vascular tone. Eur Respir J. 1992 Jun;5(6):757–762. [PubMed] [Google Scholar]
- Dinh-Xuan A. T., Higenbottam T. W., Clelland C. A., Pepke-Zaba J., Cremona G., Butt A. Y., Large S. R., Wells F. C., Wallwork J. Impairment of endothelium-dependent pulmonary-artery relaxation in chronic obstructive lung disease. N Engl J Med. 1991 May 30;324(22):1539–1547. doi: 10.1056/NEJM199105303242203. [DOI] [PubMed] [Google Scholar]
- Drenk F., Mensing H., Serbin A., Deicher H. Studies on endothelial cell cytotoxic activity in sera of patients with progressive systemic sclerosis, Raynaud syndrome, rheumatoid arthritis, and systemic lupus erythematosus. Rheumatol Int. 1985;5(6):259–263. doi: 10.1007/BF00541353. [DOI] [PubMed] [Google Scholar]
- Etoh T., Igarashi A., Iozumi K., Ishibashi Y., Takehara K. The effects of scleroderma sera on endothelial cell survival in vitro. Arch Dermatol Res. 1990;282(8):516–519. doi: 10.1007/BF00371946. [DOI] [PubMed] [Google Scholar]
- Harrison N. K., McAnulty R. J., Haslam P. L., Black C. M., Laurent G. J. Evidence for protein oedema, neutrophil influx, and enhanced collagen production in lungs of patients with systemic sclerosis. Thorax. 1990 Aug;45(8):606–610. doi: 10.1136/thx.45.8.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kharitonov S. A., Barnes P. J. Nasal contribution to exhaled nitric oxide during exhalation against resistance or during breath holding. Thorax. 1997 Jun;52(6):540–544. doi: 10.1136/thx.52.6.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kharitonov S. A., Chung K. F., Evans D., O'Connor B. J., Barnes P. J. Increased exhaled nitric oxide in asthma is mainly derived from the lower respiratory tract. Am J Respir Crit Care Med. 1996 Jun;153(6 Pt 1):1773–1780. doi: 10.1164/ajrccm.153.6.8665033. [DOI] [PubMed] [Google Scholar]
- Kharitonov S. A., Logan-Sinclair R. B., Busset C. M., Shinebourne E. A. Peak expiratory nitric oxide differences in men and women: relation to the menstrual cycle. Br Heart J. 1994 Sep;72(3):243–245. doi: 10.1136/hrt.72.3.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kharitonov S. A., Yates D., Robbins R. A., Logan-Sinclair R., Shinebourne E. A., Barnes P. J. Increased nitric oxide in exhaled air of asthmatic patients. Lancet. 1994 Jan 15;343(8890):133–135. doi: 10.1016/s0140-6736(94)90931-8. [DOI] [PubMed] [Google Scholar]
- Kourembanas S., McQuillan L. P., Leung G. K., Faller D. V. Nitric oxide regulates the expression of vasoconstrictors and growth factors by vascular endothelium under both normoxia and hypoxia. J Clin Invest. 1993 Jul;92(1):99–104. doi: 10.1172/JCI116604. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Last J. A., Gelzleichter T. R., Pinkerton K. E., Walker R. M., Witschi H. A new model of progressive pulmonary fibrosis in rats. Am Rev Respir Dis. 1993 Aug;148(2):487–494. doi: 10.1164/ajrccm/148.2.487. [DOI] [PubMed] [Google Scholar]
- Lee P., Langevitz P., Alderdice C. A., Aubrey M., Baer P. A., Baron M., Buskila D., Dutz J. P., Khostanteen I., Piper S. Mortality in systemic sclerosis (scleroderma). Q J Med. 1992 Feb;82(298):139–148. [PubMed] [Google Scholar]
- Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
- Prescott R. J., Freemont A. J., Jones C. J., Hoyland J., Fielding P. Sequential dermal microvascular and perivascular changes in the development of scleroderma. J Pathol. 1992 Mar;166(3):255–263. doi: 10.1002/path.1711660307. [DOI] [PubMed] [Google Scholar]
- Quanjer P. H., Tammeling G. J., Cotes J. E., Pedersen O. F., Peslin R., Yernault J. C. Lung volumes and forced ventilatory flows. Report Working Party Standardization of Lung Function Tests, European Community for Steel and Coal. Official Statement of the European Respiratory Society. Eur Respir J Suppl. 1993 Mar;16:5–40. [PubMed] [Google Scholar]
- Radomski M. W., Palmer R. M., Moncada S. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 1987 Nov 7;2(8567):1057–1058. doi: 10.1016/s0140-6736(87)91481-4. [DOI] [PubMed] [Google Scholar]
- Robbins R. A., Barnes P. J., Springall D. R., Warren J. B., Kwon O. J., Buttery L. D., Wilson A. J., Geller D. A., Polak J. M. Expression of inducible nitric oxide in human lung epithelial cells. Biochem Biophys Res Commun. 1994 Aug 30;203(1):209–218. doi: 10.1006/bbrc.1994.2169. [DOI] [PubMed] [Google Scholar]
- Rubanyi G. M., Ho E. H., Cantor E. H., Lumma W. C., Botelho L. H. Cytoprotective function of nitric oxide: inactivation of superoxide radicals produced by human leukocytes. Biochem Biophys Res Commun. 1991 Dec 31;181(3):1392–1397. doi: 10.1016/0006-291x(91)92093-y. [DOI] [PubMed] [Google Scholar]
- Saleh D., Barnes P. J., Giaid A. Increased production of the potent oxidant peroxynitrite in the lungs of patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 1997 May;155(5):1763–1769. doi: 10.1164/ajrccm.155.5.9154889. [DOI] [PubMed] [Google Scholar]
- Silver R. M., Miller K. S., Kinsella M. B., Smith E. A., Schabel S. I. Evaluation and management of scleroderma lung disease using bronchoalveolar lavage. Am J Med. 1990 May;88(5):470–476. doi: 10.1016/0002-9343(90)90425-d. [DOI] [PubMed] [Google Scholar]
- Steen V. D., Graham G., Conte C., Owens G., Medsger T. A., Jr Isolated diffusing capacity reduction in systemic sclerosis. Arthritis Rheum. 1992 Jul;35(7):765–770. doi: 10.1002/art.1780350709. [DOI] [PubMed] [Google Scholar]
- Stupi A. M., Steen V. D., Owens G. R., Barnes E. L., Rodnan G. P., Medsger T. A., Jr Pulmonary hypertension in the CREST syndrome variant of systemic sclerosis. Arthritis Rheum. 1986 Apr;29(4):515–524. doi: 10.1002/art.1780290409. [DOI] [PubMed] [Google Scholar]
- Ungerer R. G., Tashkin D. P., Furst D., Clements P. J., Gong H., Jr, Bein M., Smith J. W., Roberts N., Cabeen W. Prevalence and clinical correlates of pulmonary arterial hypertension in progressive systemic sclerosis. Am J Med. 1983 Jul;75(1):65–74. doi: 10.1016/0002-9343(83)91169-5. [DOI] [PubMed] [Google Scholar]
- Winkelmann B. R., Kullmer T. H., Kneissl D. G., Trenk D., Kronenberger H. Low-dose almitrine bismesylate in the treatment of hypoxemia due to chronic obstructive pulmonary disease. Chest. 1994 May;105(5):1383–1391. doi: 10.1378/chest.105.5.1383. [DOI] [PubMed] [Google Scholar]
- Young R. H., Mark G. J. Pulmonary vascular changes in scleroderma. Am J Med. 1978 Jun;64(6):998–1004. doi: 10.1016/0002-9343(78)90455-2. [DOI] [PubMed] [Google Scholar]
- Yousem S. A. The pulmonary pathologic manifestations of the CREST syndrome. Hum Pathol. 1990 May;21(5):467–474. doi: 10.1016/0046-8177(90)90002-m. [DOI] [PubMed] [Google Scholar]
- de Graaf J. C., Banga J. D., Moncada S., Palmer R. M., de Groot P. G., Sixma J. J. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation. 1992 Jun;85(6):2284–2290. doi: 10.1161/01.cir.85.6.2284. [DOI] [PubMed] [Google Scholar]