Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1986 Oct;30(4):528–531. doi: 10.1128/aac.30.4.528

Efficacy of ciprofloxacin in experimental aortic valve endocarditis caused by a multiply beta-lactam-resistant variant of Pseudomonas aeruginosa stably derepressed for beta-lactamase production.

A S Bayer, P Lindsay, J Yih, L Hirano, D Lee, I K Blomquist
PMCID: PMC176474  PMID: 3539007

Abstract

The emergence of multi-beta-lactam resistance is a limiting factor in treating invasive Pseudomonas infections with newer cephalosporins. The in vivo efficacy of ciprofloxacin, a new carboxy-quinolone, was evaluated in experimental aortic valve endocarditis caused by a strain of Pseudomonas aeruginosa which is stably derepressed for beta-lactamase production and is resistant to ceftazidime and multiple other beta-lactam agents. A total of 51 catheterized rabbits with aortic catheters in place were infected with this strain and then received no therapy (controls), ceftazidime (75 mg/kg per day), or ciprofloxacin (80 mg/kg per day). Ciprofloxacin sterilized all blood cultures and significantly lowered vegetation densities of P. aeruginosa by day 2 of treatment versus controls (P less than 0.0005) and animals receiving ceftazidime (P less than 0.0005). This beneficial effect of ciprofloxacin was also noted on therapy days 6 and 11. Ciprofloxacin rendered most vegetations (85%) culture negative over the 11-day treatment period and achieved bacteriologic cure in 73% of animals (P less than 0.0005 versus other therapy groups). Ciprofloxacin prevented bacteriologic relapse at 6 days posttherapy. No ciprofloxacin resistance was detected among Pseudomonas isolates from cardiac vegetations. Ciprofloxacin warrants further evaluation in vivo versus multi-drug-resistant gram-negative bacillary infections.

Full text

PDF
529

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archer G., Fekety F. R. Experimental endocarditis due to Pseudomonas aeruginosa. I. Description of a model. J Infect Dis. 1976 Jul;134(1):1–7. doi: 10.1093/infdis/134.1.1. [DOI] [PubMed] [Google Scholar]
  2. Bayer A. S., Blomquist I. K., Kim K. S. Ciprofloxacin in experimental aortic valve endocarditis due to Pseudomonas aeruginosa. J Antimicrob Chemother. 1986 May;17(5):641–649. doi: 10.1093/jac/17.5.641. [DOI] [PubMed] [Google Scholar]
  3. Bayer A. S., Kim K. S. In vivo efficacy of azlocillin and amikacin versus ciprofloxacin with and without amikacin in experimental right-sided endocarditis due to Pseudomonas aeruginosa. Chemotherapy. 1986;32(4):364–373. doi: 10.1159/000238436. [DOI] [PubMed] [Google Scholar]
  4. Bayer A. S., Lam K., Norman D., Kim K. S., Morrison J. O. Amikacin + ceftazidime therapy of experimental right-sided Pseudomonas aeruginosa endocarditis in rabbits. Chemotherapy. 1985;31(5):351–361. doi: 10.1159/000238359. [DOI] [PubMed] [Google Scholar]
  5. Bayer A. S., Norman D., Kim K. S. Efficacy of amikacin and ceftazidime in experimental aortic valve endocarditis due to Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1985 Dec;28(6):781–785. doi: 10.1128/aac.28.6.781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beckwith D. G., Jahre J. A. Role of a cefoxitin-inducible beta-lactamase in a case of breakthrough bacteremia. J Clin Microbiol. 1980 Oct;12(4):517–520. doi: 10.1128/jcm.12.4.517-520.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carrizosa J., Kaye D. Antibiotic synergism in enterococcal endocarditis. J Lab Clin Med. 1976 Jul;88(1):132–141. [PubMed] [Google Scholar]
  8. Chambers H. F., Hackbarth C. J., Drake T. A., Rusnak M. G., Sande M. A. Endocarditis due to methicillin-resistant Staphylococcus aureus in rabbits: expression of resistance to beta-lactam antibiotics in vivo and in vitro. J Infect Dis. 1984 Jun;149(6):894–903. doi: 10.1093/infdis/149.6.894. [DOI] [PubMed] [Google Scholar]
  9. Choi C., Bayer A. S., Fujita N. K., Lam K., Guze L. B., Yoshikawa T. T. Therapy of experimental Pseudomonas endocarditis with high-dose amikacin and ticarcillin. Chemotherapy. 1983;29(4):303–312. doi: 10.1159/000238213. [DOI] [PubMed] [Google Scholar]
  10. Durack D. T., Beeson P. B. Experimental bacterial endocarditis. II. Survival of a bacteria in endocardial vegetations. Br J Exp Pathol. 1972 Feb;53(1):50–53. [PMC free article] [PubMed] [Google Scholar]
  11. Preheim L. C., Penn R. G., Sanders C. C., Goering R. V., Giger D. K. Emergence of resistance to beta-lactam and aminoglycoside antibiotics during moxalactam therapy of Pseudomonas aeruginosa infections. Antimicrob Agents Chemother. 1982 Dec;22(6):1037–1041. doi: 10.1128/aac.22.6.1037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Prober C. G., Dougherty S. S., Vosti K. L., Yeager A. S. Comparison of a micromethod for performance of the serum bactericidal test with the standard tube dilution method. Antimicrob Agents Chemother. 1979 Jul;16(1):46–48. doi: 10.1128/aac.16.1.46. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Reyes M. P., Brown W. J., Lerner A. M. Treatment of patients with pseudomonas endocarditis with high dose aminoglycoside and carbenicillin therapy. Medicine (Baltimore) 1978 Jan;57(1):57–67. doi: 10.1097/00005792-197801000-00004. [DOI] [PubMed] [Google Scholar]
  14. Reyes M. P., Lerner A. M. Current problems in the treatment of infective endocarditis due to Pseudomonas aeruginosa. Rev Infect Dis. 1983 Mar-Apr;5(2):314–321. doi: 10.1093/clinids/5.2.314. [DOI] [PubMed] [Google Scholar]
  15. Sande M. A., Johnson M. L. Antimicrobial therapy of experimental endocarditis caused by Staphylococcus aureus. J Infect Dis. 1975 Apr;131(4):367–375. doi: 10.1093/infdis/131.4.367. [DOI] [PubMed] [Google Scholar]
  16. Sanders C. C. Novel resistance selected by the new expanded-spectrum cephalosporins: a concern. J Infect Dis. 1983 Mar;147(3):585–589. doi: 10.1093/infdis/147.3.585. [DOI] [PubMed] [Google Scholar]
  17. Sanders C. C., Sanders W. E., Jr Emergence of resistance during therapy with the newer beta-lactam antibiotics: role of inducible beta-lactamases and implications for the future. Rev Infect Dis. 1983 Jul-Aug;5(4):639–648. doi: 10.1093/clinids/5.4.639. [DOI] [PubMed] [Google Scholar]
  18. Sanders C. C., Sanders W. E., Jr, Goering R. V., Werner V. Selection of multiple antibiotic resistance by quinolones, beta-lactams, and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrob Agents Chemother. 1984 Dec;26(6):797–801. doi: 10.1128/aac.26.6.797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Tartaglione T. A., Raffalovich A. C., Poynor W. J., Espinel-Ingroff A., Kerkering T. M. Pharmacokinetics and tolerance of ciprofloxacin after sequential increasing oral doses. Antimicrob Agents Chemother. 1986 Jan;29(1):62–66. doi: 10.1128/aac.29.1.62. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES