Skip to main content
Annals of the Rheumatic Diseases logoLink to Annals of the Rheumatic Diseases
. 2000 Nov;59(Suppl 1):i17–i20. doi: 10.1136/ard.59.suppl_1.i17

Targeting interleukin 18 with interleukin 18 binding protein

C Dinarello
PMCID: PMC1766611  PMID: 11053080

Abstract

A novel, constitutively expressed and secreted interleukin 18 (IL18) binding protein (IL18BP) neutralises IL18. IL18BP shares many characteristics with soluble cytokine receptors of the IL1 family in that the protein exhibits specificity for IL18, belongs to the immunoglobulin-like class of receptors and has limited amino acid sequences with those of the IL1 receptor type II. However, unlike soluble cytokine receptors, IL18BP does not have a transmembrane domain and hence is not anchored to the cell membrane. IL18BP is a secreted protein and not cleaved from the cell surface. IL18BP is naturally occurring and was isolated from the urine of healthy subjects. Because IL18 is an important inducer of interferon γ (IFNγ), IL18BP suppresses the production of IFNγ resulting in reduced T-helper type 1 immune responses. There are four human and two mouse isoforms—resulting from mRNA splicing and found in various cDNA libraries. Each of these IL18BP isoforms have been expressed, purified and assessed for binding and neutralisation of IL18 biological activities. Two human IL18BP isoforms exhibited the greatest affinity for IL18 with a rapid on-rate, a slow off-rate and a dissociation constant (kDa) of 399 pM. The two other isoforms with an incomplete immunoglobulin domain were unable to neutralise IL18. The two human isoforms that possess a complete immunoglobulin domain, neutralise >95% IL18 at a molar excess of two. Molecular modelling identified a large mixed electrostatic and hydrophobic binding site in the immunoglobulin domain of IL18BP, which could account for its high affinity binding to the ligand. These high affinity forms may be ideally suited for blocking IL18 in human disease. It is likely that preferential secretion of high affinity functional and non-functional isoforms of IL18BP affect the immune response and the outcome of disease.



Full Text

The Full Text of this article is available as a PDF (95.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aderka D., Engelmann H., Maor Y., Brakebusch C., Wallach D. Stabilization of the bioactivity of tumor necrosis factor by its soluble receptors. J Exp Med. 1992 Feb 1;175(2):323–329. doi: 10.1084/jem.175.2.323. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Arend W. P., Malyak M., Smith M. F., Jr, Whisenand T. D., Slack J. L., Sims J. E., Giri J. G., Dower S. K. Binding of IL-1 alpha, IL-1 beta, and IL-1 receptor antagonist by soluble IL-1 receptors and levels of soluble IL-1 receptors in synovial fluids. J Immunol. 1994 Nov 15;153(10):4766–4774. [PubMed] [Google Scholar]
  3. Bazan J. F., Timans J. C., Kastelein R. A. A newly defined interleukin-1? Nature. 1996 Feb 15;379(6566):591–591. doi: 10.1038/379591a0. [DOI] [PubMed] [Google Scholar]
  4. Demeure C. E., Yang L. P., Desjardins C., Raynauld P., Delespesse G. Prostaglandin E2 primes naive T cells for the production of anti-inflammatory cytokines. Eur J Immunol. 1997 Dec;27(12):3526–3531. doi: 10.1002/eji.1830271254. [DOI] [PubMed] [Google Scholar]
  5. Faggioni R., Jones-Carson J., Reed D. A., Dinarello C. A., Feingold K. R., Grunfeld C., Fantuzzi G. Leptin-deficient (ob/ob) mice are protected from T cell-mediated hepatotoxicity: role of tumor necrosis factor alpha and IL-18. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2367–2372. doi: 10.1073/pnas.040561297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gold K. N., Weyand C. M., Goronzy J. J. Modulation of helper T cell function by prostaglandins. Arthritis Rheum. 1994 Jun;37(6):925–933. doi: 10.1002/art.1780370623. [DOI] [PubMed] [Google Scholar]
  7. Hoshino K., Tsutsui H., Kawai T., Takeda K., Nakanishi K., Takeda Y., Akira S. Cutting edge: generation of IL-18 receptor-deficient mice: evidence for IL-1 receptor-related protein as an essential IL-18 binding receptor. J Immunol. 1999 May 1;162(9):5041–5044. [PubMed] [Google Scholar]
  8. Kaliński P., Hilkens C. M., Snijders A., Snijdewint F. G., Kapsenberg M. L. Dendritic cells, obtained from peripheral blood precursors in the presence of PGE2, promote Th2 responses. Adv Exp Med Biol. 1997;417:363–367. doi: 10.1007/978-1-4757-9966-8_59. [DOI] [PubMed] [Google Scholar]
  9. Kim S. H., Eisenstein M., Reznikov L., Fantuzzi G., Novick D., Rubinstein M., Dinarello C. A. Structural requirements of six naturally occurring isoforms of the IL-18 binding protein to inhibit IL-18. Proc Natl Acad Sci U S A. 2000 Feb 1;97(3):1190–1195. doi: 10.1073/pnas.97.3.1190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Miki T., Matsui T., Heidaran M. A., Aaronson S. A. An efficient directional cloning system to construct cDNA libraries containing full-length inserts at high frequency. Gene. 1989 Nov 15;83(1):137–146. doi: 10.1016/0378-1119(89)90411-3. [DOI] [PubMed] [Google Scholar]
  11. Nakamura K., Okamura H., Wada M., Nagata K., Tamura T. Endotoxin-induced serum factor that stimulates gamma interferon production. Infect Immun. 1989 Feb;57(2):590–595. doi: 10.1128/iai.57.2.590-595.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Netea M. G., Fantuzzi G., Kullberg B. J., Stuyt R. J., Pulido E. J., McIntyre R. C., Jr, Joosten L. A., Van der Meer J. W., Dinarello C. A. Neutralization of IL-18 reduces neutrophil tissue accumulation and protects mice against lethal Escherichia coli and Salmonella typhimurium endotoxemia. J Immunol. 2000 Mar 1;164(5):2644–2649. doi: 10.4049/jimmunol.164.5.2644. [DOI] [PubMed] [Google Scholar]
  13. Novick D., Kim S. H., Fantuzzi G., Reznikov L. L., Dinarello C. A., Rubinstein M. Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. Immunity. 1999 Jan;10(1):127–136. doi: 10.1016/s1074-7613(00)80013-8. [DOI] [PubMed] [Google Scholar]
  14. Parnet P., Garka K. E., Bonnert T. P., Dower S. K., Sims J. E. IL-1Rrp is a novel receptor-like molecule similar to the type I interleukin-1 receptor and its homologues T1/ST2 and IL-1R AcP. J Biol Chem. 1996 Feb 23;271(8):3967–3970. doi: 10.1074/jbc.271.8.3967. [DOI] [PubMed] [Google Scholar]
  15. Puren A. J., Fantuzzi G., Dinarello C. A. Gene expression, synthesis, and secretion of interleukin 18 and interleukin 1beta are differentially regulated in human blood mononuclear cells and mouse spleen cells. Proc Natl Acad Sci U S A. 1999 Mar 2;96(5):2256–2261. doi: 10.1073/pnas.96.5.2256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Reuter B. K., Asfaha S., Buret A., Sharkey K. A., Wallace J. L. Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2. J Clin Invest. 1996 Nov 1;98(9):2076–2085. doi: 10.1172/JCI119013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Reznikov L. L., Kim S. H., Westcott J. Y., Frishman J., Fantuzzi G., Novick D., Rubinstein M., Dinarello C. A. IL-18 binding protein increases spontaneous and IL-1-induced prostaglandin production via inhibition of IFN-gamma. Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2174–2179. doi: 10.1073/pnas.040582597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Seder R. A., Paul W. E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol. 1994;12:635–673. doi: 10.1146/annurev.iy.12.040194.003223. [DOI] [PubMed] [Google Scholar]
  19. Takeda K., Tsutsui H., Yoshimoto T., Adachi O., Yoshida N., Kishimoto T., Okamura H., Nakanishi K., Akira S. Defective NK cell activity and Th1 response in IL-18-deficient mice. Immunity. 1998 Mar;8(3):383–390. doi: 10.1016/s1074-7613(00)80543-9. [DOI] [PubMed] [Google Scholar]
  20. Terlizzese M., Simoni P., Antonetti F. In vitro comparison of inhibiting ability of soluble TNF receptor p75 (TBP II) vs. soluble TNF receptor p55 (TBP I) against TNF-alpha and TNF-beta. J Interferon Cytokine Res. 1996 Dec;16(12):1047–1053. doi: 10.1089/jir.1996.16.1047. [DOI] [PubMed] [Google Scholar]
  21. Torigoe K., Ushio S., Okura T., Kobayashi S., Taniai M., Kunikata T., Murakami T., Sanou O., Kojima H., Fujii M. Purification and characterization of the human interleukin-18 receptor. J Biol Chem. 1997 Oct 10;272(41):25737–25742. doi: 10.1074/jbc.272.41.25737. [DOI] [PubMed] [Google Scholar]
  22. Vidal-Vanaclocha F., Fantuzzi G., Mendoza L., Fuentes A. M., Anasagasti M. J., Martín J., Carrascal T., Walsh P., Reznikov L. L., Kim S. H. IL-18 regulates IL-1beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):734–739. doi: 10.1073/pnas.97.2.734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vigers G. P., Anderson L. J., Caffes P., Brandhuber B. J. Crystal structure of the type-I interleukin-1 receptor complexed with interleukin-1beta. Nature. 1997 Mar 13;386(6621):190–194. doi: 10.1038/386190a0. [DOI] [PubMed] [Google Scholar]
  24. Wu C. Y., Wang K., McDyer J. F., Seder R. A. Prostaglandin E2 and dexamethasone inhibit IL-12 receptor expression and IL-12 responsiveness. J Immunol. 1998 Sep 15;161(6):2723–2730. [PubMed] [Google Scholar]
  25. Xiang Y., Moss B. IL-18 binding and inhibition of interferon gamma induction by human poxvirus-encoded proteins. Proc Natl Acad Sci U S A. 1999 Sep 28;96(20):11537–11542. doi: 10.1073/pnas.96.20.11537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yoshimoto T., Takeda K., Tanaka T., Ohkusu K., Kashiwamura S., Okamura H., Akira S., Nakanishi K. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for IFN-gamma production. J Immunol. 1998 Oct 1;161(7):3400–3407. [PubMed] [Google Scholar]

Articles from Annals of the Rheumatic Diseases are provided here courtesy of BMJ Publishing Group

RESOURCES