Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1995 Feb;177(4):964–972. doi: 10.1128/jb.177.4.964-972.1995

Characterization of four superoxide dismutase genes from a filamentous cyanobacterium.

W S Campbell 1, D E Laudenbach 1
PMCID: PMC176690  PMID: 7860607

Abstract

By using an oligonucleotide probe constructed from a conserved region of amino acids located in the carboxyl-terminal end of superoxide dismutase (SOD) proteins, four SOD genes were cloned from the cyanobacterium Plectonema boryanum UTEX 485. One of these genes, designated sodB, encoded an FeSOD enzyme, while the remaining three genes, designated sodA1, sodA2, and sodA3, encoded MnSOD enzymes. To investigate the expression of these four genes, total cellular RNA was isolated from P. boryanum UTEX 485 cells grown under various conditions and RNA gel blot analysis was carried out. Results indicated that sodB and sodA1 were constitutively expressed, although sodB expression was partially repressed in cells grown under conditions of iron stress. sodA2 transcripts, which were not detectable in control cells, accumulated to high levels in cells treated with methyl viologen or in cells grown under conditions of iron or nitrogen stress. However, under microaerobic conditions, iron and nitrogen stress failed to induce sodA2, indicating that multiple factors affect the regulation of sodA2. While discrete transcripts were not detected for sodA3, hybridization was observed under a number of conditions, including those which increased the accumulation of sodA2 transcripts. Additionally, there were high levels of the sodA3 transcript detected in a P. boryanum UTEX 485 mutant strain resistant to methyl viologen treatment.

Full Text

The Full Text of this article is available as a PDF (349.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abeliovich A., Kellenberg D., Shilo M. Effect of photooxidative conditions on levels of superoxide dismutase in Anacystis nidulans. Photochem Photobiol. 1974 May;19(5):379–382. doi: 10.1111/j.1751-1097.1974.tb06526.x. [DOI] [PubMed] [Google Scholar]
  2. Abeliovich A., Shilo M. Photooxidative death in blue-green algae. J Bacteriol. 1972 Sep;111(3):682–689. doi: 10.1128/jb.111.3.682-689.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Albright L. M., Huala E., Ausubel F. M. Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu Rev Genet. 1989;23:311–336. doi: 10.1146/annurev.ge.23.120189.001523. [DOI] [PubMed] [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  5. Asada K., Yoshikawa K., Takahashi M., Maeda Y., Enmanji K. Superoxide dismutases from a blue-green alga, Plectonema boryanum. J Biol Chem. 1975 Apr 25;250(8):2801–2807. [PubMed] [Google Scholar]
  6. Barra D., Schininà M. E., Bannister W. H., Bannister J. V., Bossa F. The primary structure of iron-superoxide dismutase from Photobacterium leiognathi. J Biol Chem. 1987 Jan 25;262(3):1001–1009. [PubMed] [Google Scholar]
  7. Compan I., Touati D. Interaction of six global transcription regulators in expression of manganese superoxide dismutase in Escherichia coli K-12. J Bacteriol. 1993 Mar;175(6):1687–1696. doi: 10.1128/jb.175.6.1687-1696.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Getzoff E. D., Cabelli D. E., Fisher C. L., Parge H. E., Viezzoli M. S., Banci L., Hallewell R. A. Faster superoxide dismutase mutants designed by enhancing electrostatic guidance. Nature. 1992 Jul 23;358(6384):347–351. doi: 10.1038/358347a0. [DOI] [PubMed] [Google Scholar]
  9. Herbert S. K., Samson G., Fork D. C., Laudenbach D. E. Characterization of damage to photosystems I and II in a cyanobacterium lacking detectable iron superoxide dismutase activity. Proc Natl Acad Sci U S A. 1992 Sep 15;89(18):8716–8720. doi: 10.1073/pnas.89.18.8716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Knoetzel J., Simpson D. J. The primary structure of a cDNA for PsaN, encoding an extrinsic lumenal polypeptide of barley photosystem I. Plant Mol Biol. 1993 May;22(2):337–345. doi: 10.1007/BF00014940. [DOI] [PubMed] [Google Scholar]
  11. Laudenbach D. E., Reith M. E., Straus N. A. Isolation, sequence analysis, and transcriptional studies of the flavodoxin gene from Anacystis nidulans R2. J Bacteriol. 1988 Jan;170(1):258–265. doi: 10.1128/jb.170.1.258-265.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Laudenbach D. E., Trick C. G., Straus N. A. Cloning and characterization of an Anacystis nidulans R2 superoxide dismutase gene. Mol Gen Genet. 1989 Apr;216(2-3):455–461. doi: 10.1007/BF00334390. [DOI] [PubMed] [Google Scholar]
  13. Nagasawa S., Tokishita S., Aiba H., Mizuno T. A novel sensor-regulator protein that belongs to the homologous family of signal-transduction proteins involved in adaptive responses in Escherichia coli. Mol Microbiol. 1992 Mar;6(6):799–807. doi: 10.1111/j.1365-2958.1992.tb01530.x. [DOI] [PubMed] [Google Scholar]
  14. Niederhoffer E. C., Naranjo C. M., Bradley K. L., Fee J. A. Control of Escherichia coli superoxide dismutase (sodA and sodB) genes by the ferric uptake regulation (fur) locus. J Bacteriol. 1990 Apr;172(4):1930–1938. doi: 10.1128/jb.172.4.1930-1938.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Parker M. W., Blake C. C. Crystal structure of manganese superoxide dismutase from Bacillus stearothermophilus at 2.4 A resolution. J Mol Biol. 1988 Feb 20;199(4):649–661. doi: 10.1016/0022-2836(88)90308-7. [DOI] [PubMed] [Google Scholar]
  16. Parker M. W., Blake C. C. Iron- and manganese-containing superoxide dismutases can be distinguished by analysis of their primary structures. FEBS Lett. 1988 Mar 14;229(2):377–382. doi: 10.1016/0014-5793(88)81160-8. [DOI] [PubMed] [Google Scholar]
  17. Sakamoto H., Touati D. Cloning of the iron superoxide dismutase gene (sodB) in Escherichia coli K-12. J Bacteriol. 1984 Jul;159(1):418–420. doi: 10.1128/jb.159.1.418-420.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Samson G., Herbert S. K., Fork D. C., Laudenbach D. E. Acclimation of the Photosynthetic Apparatus to Growth Irradiance in a Mutant Strain of Synechococcus Lacking Iron Superoxide Dismutase. Plant Physiol. 1994 May;105(1):287–294. doi: 10.1104/pp.105.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Thomas P. S. Hybridization of denatured RNA transferred or dotted nitrocellulose paper. Methods Enzymol. 1983;100:255–266. doi: 10.1016/0076-6879(83)00060-9. [DOI] [PubMed] [Google Scholar]
  21. Touati D. Cloning and mapping of the manganese superoxide dismutase gene (sodA) of Escherichia coli K-12. J Bacteriol. 1983 Sep;155(3):1078–1087. doi: 10.1128/jb.155.3.1078-1087.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Tsang E. W., Bowler C., Hérouart D., Van Camp W., Villarroel R., Genetello C., Van Montagu M., Inzé D. Differential regulation of superoxide dismutases in plants exposed to environmental stress. Plant Cell. 1991 Aug;3(8):783–792. doi: 10.1105/tpc.3.8.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Van Camp W., Bowler C., Villarroel R., Tsang E. W., Van Montagu M., Inzé D. Characterization of iron superoxide dismutase cDNAs from plants obtained by genetic complementation in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9903–9907. doi: 10.1073/pnas.87.24.9903. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. White J. A., Scandalios J. G. Isolation and characterization of a cDNA for mitochondrial manganese superoxide dismutase (SOD-3) of maize and its relation to other manganese superoxide dismutases. Biochim Biophys Acta. 1988 Nov 10;951(1):61–70. doi: 10.1016/0167-4781(88)90025-5. [DOI] [PubMed] [Google Scholar]
  25. von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986 Jun 11;14(11):4683–4690. doi: 10.1093/nar/14.11.4683. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES