Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 Mar;179(5):1796–1804. doi: 10.1128/jb.179.5.1796-1804.1997

Characterization of a mitomycin-binding drug resistance mechanism from the producing organism, Streptomyces lavendulae.

P J Sheldon 1, D A Johnson 1, P R August 1, H W Liu 1, D H Sherman 1
PMCID: PMC178896  PMID: 9045843

Abstract

In an effort to characterize the diversity of mechanisms involved in cellular self-protection against the antitumor antibiotic mitomycin C (MC), DNA fragments from the producing organism (Streptomyces lavendulae) were introduced into Streptomyces lividans and transformants were selected for resistance to the drug. Subcloning of a 4.0-kb BclI fragment revealed the presence of an MC resistance determinant, mrd. Nucleotide sequence analysis identified an open reading frame consisting of 130 amino acids with a predicted molecular weight of 14,364. Transcriptional analysis revealed that mrd is expressed constitutively, with increased transcription in the presence of MC. Expression of mrd in Escherichia coli resulted in the synthesis of a soluble protein with an Mr of 14,400 that conferred high-level cellular resistance to MC and a series of structurally related natural products. Purified MRD was shown to function as a drug-binding protein that provides protection against cross-linking of DNA by preventing reductive activation of MC.

Full Text

The Full Text of this article is available as a PDF (1.0 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames G. F. Bacterial periplasmic transport systems: structure, mechanism, and evolution. Annu Rev Biochem. 1986;55:397–425. doi: 10.1146/annurev.bi.55.070186.002145. [DOI] [PubMed] [Google Scholar]
  2. August P. R., Flickinger M. C., Sherman D. H. Cloning and analysis of a locus (mcr) involved in mitomycin C resistance in Streptomyces lavendulae. J Bacteriol. 1994 Jul;176(14):4448–4454. doi: 10.1128/jb.176.14.4448-4454.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. August P. R., Rahn J. A., Flickinger M. C., Sherman D. H. Inducible synthesis of the mitomycin C resistance gene product (MCRA) from Streptomyces lavendulae. Gene. 1996 Oct 10;175(1-2):261–267. doi: 10.1016/0378-1119(96)00172-2. [DOI] [PubMed] [Google Scholar]
  4. Basnayake W. V., Birch R. G. A gene from Alcaligenes denitrificans that confers albicidin resistance by reversible antibiotic binding. Microbiology. 1995 Mar;141(Pt 3):551–560. doi: 10.1099/13500872-141-3-551. [DOI] [PubMed] [Google Scholar]
  5. Bibb M. J., Findlay P. R., Johnson M. W. The relationship between base composition and codon usage in bacterial genes and its use for the simple and reliable identification of protein-coding sequences. Gene. 1984 Oct;30(1-3):157–166. doi: 10.1016/0378-1119(84)90116-1. [DOI] [PubMed] [Google Scholar]
  6. Brown W. C., Campbell J. L. A new cloning vector and expression strategy for genes encoding proteins toxic to Escherichia coli. Gene. 1993 May 15;127(1):99–103. doi: 10.1016/0378-1119(93)90622-a. [DOI] [PubMed] [Google Scholar]
  7. Cundliffe E. How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol. 1989;43:207–233. doi: 10.1146/annurev.mi.43.100189.001231. [DOI] [PubMed] [Google Scholar]
  8. Cundliffe E. Self-protection mechanisms in antibiotic producers. Ciba Found Symp. 1992;171:199–214. doi: 10.1002/9780470514344.ch12. [DOI] [PubMed] [Google Scholar]
  9. Dedon P. C., Goldberg I. H. Free-radical mechanisms involved in the formation of sequence-dependent bistranded DNA lesions by the antitumor antibiotics bleomycin, neocarzinostatin, and calicheamicin. Chem Res Toxicol. 1992 May-Jun;5(3):311–332. doi: 10.1021/tx00027a001. [DOI] [PubMed] [Google Scholar]
  10. Demple B. Adaptive responses to genotoxic damage: bacterial strategies to prevent mutation and cell death. Bioessays. 1987 Apr;6(4):157–160. doi: 10.1002/bies.950060403. [DOI] [PubMed] [Google Scholar]
  11. Demple B. Regulation of bacterial oxidative stress genes. Annu Rev Genet. 1991;25:315–337. doi: 10.1146/annurev.ge.25.120191.001531. [DOI] [PubMed] [Google Scholar]
  12. Gatignol A., Durand H., Tiraby G. Bleomycin resistance conferred by a drug-binding protein. FEBS Lett. 1988 Mar 28;230(1-2):171–175. doi: 10.1016/0014-5793(88)80665-3. [DOI] [PubMed] [Google Scholar]
  13. George A. M., Levy S. B. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J Bacteriol. 1983 Aug;155(2):531–540. doi: 10.1128/jb.155.2.531-540.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gilson E., Alloing G., Schmidt T., Claverys J. P., Dudler R., Hofnung M. Evidence for high affinity binding-protein dependent transport systems in gram-positive bacteria and in Mycoplasma. EMBO J. 1988 Dec 1;7(12):3971–3974. doi: 10.1002/j.1460-2075.1988.tb03284.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Greenberg J. T., Monach P., Chou J. H., Josephy P. D., Demple B. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6181–6185. doi: 10.1073/pnas.87.16.6181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. HATA T., HOSHI T., KANAMORI K., MATSUMAE A., SANO Y., SHIMA T., SUGAWARA R. Mitomycin, a new antibiotic from Streptomyces. I. J Antibiot (Tokyo) 1956 Jul;9(4):141–146. [PubMed] [Google Scholar]
  17. Hassan H. M., Fridovich I. Intracellular production of superoxide radical and of hydrogen peroxide by redox active compounds. Arch Biochem Biophys. 1979 Sep;196(2):385–395. doi: 10.1016/0003-9861(79)90289-3. [DOI] [PubMed] [Google Scholar]
  18. IYER V. N., SZYBALSKI W. A MOLECULAR MECHANISM OF MITOMYCIN ACTION: LINKING OF COMPLEMENTARY DNA STRANDS. Proc Natl Acad Sci U S A. 1963 Aug;50:355–362. doi: 10.1073/pnas.50.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. IYER V. N., SZYBALSKI W. MITOMYCINS AND PORFIROMYCIN: CHEMICAL MECHANISM OF ACTIVATION AND CROSS-LINKING OF DNA. Science. 1964 Jul 3;145(3627):55–58. doi: 10.1126/science.145.3627.55. [DOI] [PubMed] [Google Scholar]
  20. Kieser T. Factors affecting the isolation of CCC DNA from Streptomyces lividans and Escherichia coli. Plasmid. 1984 Jul;12(1):19–36. doi: 10.1016/0147-619x(84)90063-5. [DOI] [PubMed] [Google Scholar]
  21. Kiyoto S., Shibata T., Yamashita M., Komori T., Okuhara M., Terano H., Kohsaka M., Aoki H., Imanaka H. A new antitumor antibiotic, FR-900482. II. Production, isolation, characterization and biological activity. J Antibiot (Tokyo) 1987 May;40(5):594–599. doi: 10.7164/antibiotics.40.594. [DOI] [PubMed] [Google Scholar]
  22. Kumar G. S., He Q. Y., Behr-Ventura D., Tomasz M. Binding of 2,7-diaminomitosene to DNA: model for the precovalent recognition of DNA by activated mitomycin C. Biochemistry. 1995 Feb 28;34(8):2662–2671. doi: 10.1021/bi00008a033. [DOI] [PubMed] [Google Scholar]
  23. Kumar S., Lipman R., Tomasz M. Recognition of specific DNA sequences by mitomycin C for alkylation. Biochemistry. 1992 Feb 11;31(5):1399–1407. doi: 10.1021/bi00120a016. [DOI] [PubMed] [Google Scholar]
  24. Mager W. H., De Kruijff A. J. Stress-induced transcriptional activation. Microbiol Rev. 1995 Sep;59(3):506–531. doi: 10.1128/mr.59.3.506-531.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Matsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene difluoride membranes. J Biol Chem. 1987 Jul 25;262(21):10035–10038. [PubMed] [Google Scholar]
  26. Miller V. P., Thorson J. S., Ploux O., Lo S. F., Liu H. W. Cofactor characterization and mechanistic studies of CDP-6-deoxy-delta 3,4-glucoseen reductase: exploration into a novel enzymatic C-O bond cleavage event. Biochemistry. 1993 Nov 9;32(44):11934–11942. doi: 10.1021/bi00095a025. [DOI] [PubMed] [Google Scholar]
  27. Pritsos C. A., Sartorelli A. C. Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotics. Cancer Res. 1986 Jul;46(7):3528–3532. [PubMed] [Google Scholar]
  28. Sartorelli A. C., Hodnick W. F., Belcourt M. F., Tomasz M., Haffty B., Fischer J. J., Rockwell S. Mitomycin C: a prototype bioreductive agent. Oncol Res. 1994;6(10-11):501–508. [PubMed] [Google Scholar]
  29. Sophianopoulos J. A., Durham S. J., Sophianopoulos A. J., Ragsdale H. L., Cropper W. P., Jr Ultrafiltration is theoretically equivalent to equilibrium dialysis but much simpler to carry out. Arch Biochem Biophys. 1978 Apr 15;187(1):132–137. doi: 10.1016/0003-9861(78)90015-2. [DOI] [PubMed] [Google Scholar]
  30. Strohl W. R. Compilation and analysis of DNA sequences associated with apparent streptomycete promoters. Nucleic Acids Res. 1992 Mar 11;20(5):961–974. doi: 10.1093/nar/20.5.961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sugiyama M., Thompson C. J., Kumagai T., Suzuki K., Deblaere R., Villarroel R., Davies J. Characterisation by molecular cloning of two genes from Streptomyces verticillus encoding resistance to bleomycin. Gene. 1994 Dec 30;151(1-2):11–16. doi: 10.1016/0378-1119(94)90626-2. [DOI] [PubMed] [Google Scholar]
  32. Tomasz M., Chawla A. K., Lipman R. Mechanism of monofunctional and bifunctional alkylation of DNA by mitomycin C. Biochemistry. 1988 May 3;27(9):3182–3187. doi: 10.1021/bi00409a009. [DOI] [PubMed] [Google Scholar]
  33. Tomasz M. Mitomycin C: small, fast and deadly (but very selective). Chem Biol. 1995 Sep;2(9):575–579. doi: 10.1016/1074-5521(95)90120-5. [DOI] [PubMed] [Google Scholar]
  34. Yura T., Nagai H., Mori H. Regulation of the heat-shock response in bacteria. Annu Rev Microbiol. 1993;47:321–350. doi: 10.1146/annurev.mi.47.100193.001541. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES