Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1997 May;179(9):2969–2975. doi: 10.1128/jb.179.9.2969-2975.1997

Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase.

S Reiser 1, C Somerville 1
PMCID: PMC179062  PMID: 9139916

Abstract

Acinetobacter calcoaceticus BD413 accumulates wax esters and triacylglycerol under conditions of mineral nutrient limitation. Nitrosoguanidine-induced mutants of strain BD413 were isolated that failed to accumulate wax esters under nitrogen-limited growth conditions. One of the mutants, Wow15 (without wax), accumulated wax when grown in the presence of cis-11-hexadecenal and hexadecanol but not hexadecane or hexadecanoic acid. This suggested that the mutation may have inactivated a gene encoding either an acyl-acyl carrier protein or acyl-coenzyme A (CoA) reductase. The Wow15 mutant was complemented with a cosmid genomic library prepared from wild-type A. calcoaceticus BD413. The complementary region was localized to a single gene (acr1) encoding a protein of 32,468 Da that is 44% identical over a region of 264 amino acids to a product of unknown function encoded by an open reading frame associated with mycolic acid synthesis in Mycobacterium tuberculosis H37Ra. Extracts of Escherichia coli cells expressing the acr1 gene catalyzed the reduction of acyl-CoA to the corresponding fatty aldehyde, indicating that the gene encodes a novel fatty acyl-CoA reductase.

Full Text

The Full Text of this article is available as a PDF (775.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen L. N., Hanson R. S. Construction of broad-host-range cosmid cloning vectors: identification of genes necessary for growth of Methylobacterium organophilum on methanol. J Bacteriol. 1985 Mar;161(3):955–962. doi: 10.1128/jb.161.3.955-962.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. Basic local alignment search tool. J Mol Biol. 1990 Oct 5;215(3):403–410. doi: 10.1016/S0022-2836(05)80360-2. [DOI] [PubMed] [Google Scholar]
  3. Arrowsmith T. J., Malpartida F., Sherman D. H., Birch A., Hopwood D. A., Robinson J. A. Characterisation of actI-homologous DNA encoding polyketide synthase genes from the monensin producer Streptomyces cinnamonensis. Mol Gen Genet. 1992 Aug;234(2):254–264. doi: 10.1007/BF00283846. [DOI] [PubMed] [Google Scholar]
  4. Figurski D. H., Helinski D. R. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1648–1652. doi: 10.1073/pnas.76.4.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Fox M. G., Dickinson F. M., Ratledge C. Long-chain alcohol and aldehyde dehydrogenase activities in Acinetobacter calcoaceticus strain HO1-N. J Gen Microbiol. 1992 Sep;138(9):1963–1972. doi: 10.1099/00221287-138-9-1963. [DOI] [PubMed] [Google Scholar]
  6. Juni E., Janik A. Transformation of Acinetobacter calco-aceticus (Bacterium anitratum). J Bacteriol. 1969 Apr;98(1):281–288. doi: 10.1128/jb.98.1.281-288.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kleckner N., Bender J., Gottesman S. Uses of transposons with emphasis on Tn10. Methods Enzymol. 1991;204:139–180. doi: 10.1016/0076-6879(91)04009-d. [DOI] [PubMed] [Google Scholar]
  8. Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
  9. Makula R. A., Lockwood P. J., Finnerty W. R. Comparative analysis of the lipids of Acinetobacter species grown on hexadecane. J Bacteriol. 1975 Jan;121(1):250–258. doi: 10.1128/jb.121.1.250-258.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Persson B., Krook M., Jörnvall H. Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur J Biochem. 1991 Sep 1;200(2):537–543. doi: 10.1111/j.1432-1033.1991.tb16215.x. [DOI] [PubMed] [Google Scholar]
  11. Scott C. C., Finnerty W. R. Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N. J Bacteriol. 1976 Jul;127(1):481–489. doi: 10.1128/jb.127.1.481-489.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Singer M. E., Finnerty W. R. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism. J Bacteriol. 1985 Dec;164(3):1017–1024. doi: 10.1128/jb.164.3.1017-1024.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Singer M. E., Finnerty W. R. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism. J Bacteriol. 1985 Dec;164(3):1011–1016. doi: 10.1128/jb.164.3.1011-1016.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Singer M. E., Tyler S. M., Finnerty W. R. Growth of Acinetobacter sp. strain HO1-N on n-hexadecanol: physiological and ultrastructural characteristics. J Bacteriol. 1985 Apr;162(1):162–169. doi: 10.1128/jb.162.1.162-169.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wang L., Takayama K., Goldman D. S., Schnoes H. K. Synthesis of alcohol and wax ester by a cell-free system in Mycobacterium tuberculosis. Biochim Biophys Acta. 1972 Jan 27;260(1):41–48. doi: 10.1016/0005-2760(72)90072-0. [DOI] [PubMed] [Google Scholar]
  16. Yuan Y., Lee R. E., Besra G. S., Belisle J. T., Barry C. E., 3rd Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1995 Jul 3;92(14):6630–6634. doi: 10.1073/pnas.92.14.6630. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES