Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1992 Sep;67(9):1107–1110. doi: 10.1136/adc.67.9.1107

Endocrine deficit after fractionated total body irradiation.

A L Ogilvy-Stuart 1, D J Clark 1, W H Wallace 1, B E Gibson 1, R F Stevens 1, S M Shalet 1, M D Donaldson 1
PMCID: PMC1793609  PMID: 1417055

Abstract

Endocrine function was assessed in 31 children (17 boys) after fractionated total body irradiation used in the preparative regimen for bone marrow transplantation. Endocrine dysfunction was present in 25 children. Fifteen of 29 had growth hormone insufficiency 0.9-4.9 years after total body irradiation, yet only three of the 15 had received previous cranial irradiation. Five of 30 had thyroid dysfunction: two with a low thyroxine and raised thyroid stimulating hormone (TSH) concentration and three with a raised TSH and normal thyroxine concentration. Thus the incidence of thyroid dysfunction (16%) is much lower than that reported after single fraction total body irradiation (39-59%). In only two children were abnormalities of the hypothalamic-pituitary-adrenal axis demonstrated. The majority of pubertal children assessed (n = 15) showed evidence of gonadal damage. All the pubertal girls (n = 5) had ovarian failure, although there was evidence of recovery of ovarian function in one girl. All seven boys in late puberty showed evidence of damage to the germinal epithelium, and two of three in early puberty had raised follicle stimulating hormone concentrations. Despite the use of a fractionated total body irradiation regimen, endocrine morbidity is substantial and children undergoing such procedures will require long term endocrine review and management.

Full text

PDF
1108

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ash P. The influence of radiation on fertility in man. Br J Radiol. 1980 Apr;53(628):271–278. doi: 10.1259/0007-1285-53-628-271. [DOI] [PubMed] [Google Scholar]
  2. Best J. D., Alford F. P., Donald R. A. Evaluation of the three hour metyrapone test in adults. Clin Endocrinol (Oxf) 1980 Jul;13(1):69–76. doi: 10.1111/j.1365-2265.1980.tb01024.x. [DOI] [PubMed] [Google Scholar]
  3. Birch J. M., Marsden H. B., Jones P. H., Pearson D., Blair V. Improvements in survival from childhood cancer: results of a population based survey over 30 years. Br Med J (Clin Res Ed) 1988 May 14;296(6633):1372–1376. doi: 10.1136/bmj.296.6633.1372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borgström B., Bolme P. Growth and growth hormone in children after bone marrow transplantation. Horm Res. 1988;30(2-3):98–100. doi: 10.1159/000181037. [DOI] [PubMed] [Google Scholar]
  5. Clayton P. E., Shalet S. M. Dose dependency of time of onset of radiation-induced growth hormone deficiency. J Pediatr. 1991 Feb;118(2):226–228. doi: 10.1016/s0022-3476(05)80487-1. [DOI] [PubMed] [Google Scholar]
  6. Hendry J. H. Response of human organs to single (or fractionated equivalent) doses of irradiation. Int J Radiat Biol. 1989 Nov;56(5):691–700. doi: 10.1080/09553008914551921. [DOI] [PubMed] [Google Scholar]
  7. Katsanis E., Shapiro R. S., Robison L. L., Haake R. J., Kim T., Pescovitz O. H., Ramsay N. K. Thyroid dysfunction following bone marrow transplantation: long-term follow-up of 80 pediatric patients. Bone Marrow Transplant. 1990 May;5(5):335–340. [PubMed] [Google Scholar]
  8. Leiper A. D., Stanhope R., Lau T., Grant D. B., Blacklock H., Chessells J. M., Plowman P. N. The effect of total body irradiation and bone marrow transplantation during childhood and adolescence on growth and endocrine function. Br J Haematol. 1987 Dec;67(4):419–426. doi: 10.1111/j.1365-2141.1987.tb06163.x. [DOI] [PubMed] [Google Scholar]
  9. Littley M. D., Shalet S. M., Morgenstern G. R., Deakin D. P. Endocrine and reproductive dysfunction following fractionated total body irradiation in adults. Q J Med. 1991 Mar;78(287):265–274. [PubMed] [Google Scholar]
  10. Peters L. Total Body Irradiation Conference: discussion: the radiobiological bases of TBI. Int J Radiat Oncol Biol Phys. 1980 Jun;6(6):785–787. doi: 10.1016/0360-3016(80)90241-2. [DOI] [PubMed] [Google Scholar]
  11. Sanders J. E., Pritchard S., Mahoney P., Amos D., Buckner C. D., Witherspoon R. P., Deeg H. J., Doney K. C., Sullivan K. M., Appelbaum F. R. Growth and development following marrow transplantation for leukemia. Blood. 1986 Nov;68(5):1129–1135. [PubMed] [Google Scholar]
  12. Shalet S. M., Beardwell C. G., Twomey J. A., Jones P. H., Pearson D. Endocrine function following the treatment of acute leukemia in childhood. J Pediatr. 1977 Jun;90(6):920–923. doi: 10.1016/s0022-3476(77)80559-3. [DOI] [PubMed] [Google Scholar]
  13. Shalet S. M. Gonadal function following radiation and cytotoxic chemotherapy in childhood. Ergeb Inn Med Kinderheilkd. 1989;58:1–21. doi: 10.1007/978-3-642-74042-8_1. [DOI] [PubMed] [Google Scholar]
  14. Sklar C. A., Kim T. H., Ramsay N. K. Testicular function following bone marrow transplantation performed during or after puberty. Cancer. 1984 Apr 1;53(7):1498–1501. doi: 10.1002/1097-0142(19840401)53:7<1498::aid-cncr2820530712>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  15. Sklar C. A., Kim T. H., Ramsay N. K. Thyroid dysfunction among long-term survivors of bone marrow transplantation. Am J Med. 1982 Nov;73(5):688–694. doi: 10.1016/0002-9343(82)90411-9. [DOI] [PubMed] [Google Scholar]
  16. Wallace W. H., Shalet S. M., Hendry J. H., Morris-Jones P. H., Gattamaneni H. R. Ovarian failure following abdominal irradiation in childhood: the radiosensitivity of the human oocyte. Br J Radiol. 1989 Nov;62(743):995–998. doi: 10.1259/0007-1285-62-743-995. [DOI] [PubMed] [Google Scholar]
  17. Zachmann M., Prader A., Kind H. P., Häfliger H., Budliger H. Testicular volume during adolescence. Cross-sectional and longitudinal studies. Helv Paediatr Acta. 1974 Apr;29(1):61–72. [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES