Skip to main content
Archives of Disease in Childhood logoLink to Archives of Disease in Childhood
. 1993 Mar;68(3):389–392. doi: 10.1136/adc.68.3.389

Sputum tumour necrosis factor-alpha and leukotriene concentrations in cystic fibrosis.

P Greally 1, M J Hussein 1, A J Cook 1, A P Sampson 1, P J Piper 1, J F Price 1
PMCID: PMC1793872  PMID: 8385438

Abstract

It is postulated that a vigorous host inflammatory response in the cystic fibrosis lung contributes to lung injury. Tumour necrosis factor-alpha (TNF-alpha) may play a part in that process and in the generation of leukotrienes. Therefore, the relationships between sputum TNF-alpha, leukotriene concentration, and lung function abnormalities in 16 children with cystic fibrosis were investigated. Each subject provided sputum samples and performed spirometry. TNF-alpha was measured by enzyme linked immunosorbent assay; individual leukotrienes were separated using high performance liquid chromatography and quantified by radioimmunoassay. The geometric mean concentration of TNF-alpha was 129.7 pg/ml and 95% confidence interval 48.2 to 348.3. Mean (SEM) leukotriene B4 (LTB4) was 97.8 (22.9) pmol/g and total cysteinyl leukotrienes were 60.9 (14.8) pmol/g. Mean (SD) forced expiratory volume in one second (FEV1) of the group was 53 (15)% of predicted and forced vital capacity (FVC) was 65 (14)% of predicted. There was a significant positive correlation between TNF-alpha and both LTB4 and the total cysteinyl leukotriene sputum content. An inverse relationship existed between TNF-alpha and FEV1 and FVC. Moreover, a negative correlation was observed between sputum LTB4 and FEV1 and FVC. These results suggest that TNF-alpha and the leukotrienes may participate in the airways inflammation and airflow obstruction observed in cystic fibrosis subjects and support the hypothesis that TNF-alpha upregulates the 5-lipoxygenase pathway in vivo.

Full text

PDF
392

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauldry S. A., McCall C. E., Cousart S. L., Bass D. A. Tumor necrosis factor-alpha priming of phospholipase A2 activation in human neutrophils. An alternative mechanism of priming. J Immunol. 1991 Feb 15;146(4):1277–1285. [PubMed] [Google Scholar]
  2. Busam K., Gieringer C., Freudenberg M., Hohmann H. P. Staphylococcus aureus and derived exotoxins induce nuclear factor kappa B-like activity in murine bone marrow macrophages. Infect Immun. 1992 May;60(5):2008–2015. doi: 10.1128/iai.60.5.2008-2015.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Carlstedt-Duke J., Brönnegård M., Strandvik B. Pathological regulation of arachidonic acid release in cystic fibrosis: the putative basic defect. Proc Natl Acad Sci U S A. 1986 Dec;83(23):9202–9206. doi: 10.1073/pnas.83.23.9202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Drazen J. M., Austen K. F. Leukotrienes and airway responses. Am Rev Respir Dis. 1987 Oct;136(4):985–998. doi: 10.1164/ajrccm/136.4.985. [DOI] [PubMed] [Google Scholar]
  5. Ferrante A., Hauptmann B., Seckinger P., Dayer J. M. Inhibition of tumour necrosis factor alpha (TNF-alpha)-induced neutrophil respiratory burst by a TNF inhibitor. Immunology. 1991 Mar;72(3):440–442. [PMC free article] [PubMed] [Google Scholar]
  6. Klebanoff S. J., Vadas M. A., Harlan J. M., Sparks L. H., Gamble J. R., Agosti J. M., Waltersdorph A. M. Stimulation of neutrophils by tumor necrosis factor. J Immunol. 1986 Jun 1;136(11):4220–4225. [PubMed] [Google Scholar]
  7. Leeper-Woodford S. K., Carey P. D., Byrne K., Jenkins J. K., Fisher B. J., Blocher C., Sugerman H. J., Fowler A. A., 3rd Tumor necrosis factor. Alpha and beta subtypes appear in circulation during onset of sepsis-induced lung injury. Am Rev Respir Dis. 1991 May;143(5 Pt 1):1076–1082. doi: 10.1164/ajrccm/143.5_Pt_1.1076. [DOI] [PubMed] [Google Scholar]
  8. Meager A., Parti S., Leung H., Peil E., Mahon B. Preparation and characterization of monoclonal antibodies directed against antigenic determinants of recombinant human tumour necrosis factor (rTNF). Hybridoma. 1987 Jun;6(3):305–311. doi: 10.1089/hyb.1987.6.305. [DOI] [PubMed] [Google Scholar]
  9. Millar A. B., Foley N. M., Singer M., Johnson N. M., Meager A., Rook G. A. Tumour necrosis factor in bronchopulmonary secretions of patients with adult respiratory distress syndrome. Lancet. 1989 Sep 23;2(8665):712–714. doi: 10.1016/s0140-6736(89)90772-1. [DOI] [PubMed] [Google Scholar]
  10. Muller M., Sorrell T. C. Leukotriene B4 omega-oxidation by human polymorphonuclear leukocytes is inhibited by pyocyanin, a phenazine derivative produced by Pseudomonas aeruginosa. Infect Immun. 1992 Jun;60(6):2536–2540. doi: 10.1128/iai.60.6.2536-2540.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Norman D., Elborn J. S., Cordon S. M., Rayner R. J., Wiseman M. S., Hiller E. J., Shale D. J. Plasma tumour necrosis factor alpha in cystic fibrosis. Thorax. 1991 Feb;46(2):91–95. doi: 10.1136/thx.46.2.91. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Pohlman T. H., Stanness K. A., Beatty P. G., Ochs H. D., Harlan J. M. An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1, and tumor necrosis factor-alpha increases neutrophil adherence by a CDw18-dependent mechanism. J Immunol. 1986 Jun 15;136(12):4548–4553. [PubMed] [Google Scholar]
  13. Roubin R., Elsas P. P., Fiers W., Dessein A. J. Recombinant human tumour necrosis factor (rTNF)2 enhances leukotriene biosynthesis in neutrophils and eosinophils stimulated with the Ca2+ ionophore A23187. Clin Exp Immunol. 1987 Nov;70(2):484–490. [PMC free article] [PubMed] [Google Scholar]
  14. Sampson A. P., Spencer D. A., Green C. P., Piper P. J., Price J. F. Leukotrienes in the sputum and urine of cystic fibrosis children. Br J Clin Pharmacol. 1990 Dec;30(6):861–869. doi: 10.1111/j.1365-2125.1990.tb05452.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Spencer D. A., Sampson A. P., Green C. P., Costello J. F., Piper P. J., Price J. F. Sputum cysteinyl-leukotriene levels correlate with the severity of pulmonary disease in children with cystic fibrosis. Pediatr Pulmonol. 1992 Feb;12(2):90–94. doi: 10.1002/ppul.1950120206. [DOI] [PubMed] [Google Scholar]
  16. Stead R. J., Barradas M. A., Mikhailidis D. P., Jeremy J. Y., Hodson M. E., Batten J. C., Dandona P. Platelet hyperaggregability in cystic fibrosis. Prostaglandins Leukot Med. 1987 Feb;26(2):91–103. doi: 10.1016/0262-1746(87)90104-1. [DOI] [PubMed] [Google Scholar]
  17. Suter S., Schaad U. B., Roux L., Nydegger U. E., Waldvogel F. A. Granulocyte neutral proteases and Pseudomonas elastase as possible causes of airway damage in patients with cystic fibrosis. J Infect Dis. 1984 Apr;149(4):523–531. doi: 10.1093/infdis/149.4.523. [DOI] [PubMed] [Google Scholar]
  18. Tabor D. R., Burchett S. K., Jacobs R. F. Enhanced production of monokines by canine alveolar macrophages in response to endotoxin-induced shock. Proc Soc Exp Biol Med. 1988 Apr;187(4):408–415. doi: 10.3181/00379727-187-42681. [DOI] [PubMed] [Google Scholar]
  19. Tufano M. A., Cipollaro de l'Ero G., Ianniello R., Galdiero M., Galdiero F. Protein A and other surface components of Staphylococcus aureus stimulate production of IL-1 alpha, IL-4, IL-6, TNF and IFN-gamma. Eur Cytokine Netw. 1991 Nov-Dec;2(5):361–366. [PubMed] [Google Scholar]
  20. Ulich T. R., del Castillo J., Keys M., Granger G. A., Ni R. X. Kinetics and mechanisms of recombinant human interleukin 1 and tumor necrosis factor-alpha-induced changes in circulating numbers of neutrophils and lymphocytes. J Immunol. 1987 Nov 15;139(10):3406–3415. [PubMed] [Google Scholar]

Articles from Archives of Disease in Childhood are provided here courtesy of BMJ Publishing Group

RESOURCES