Abstract
In this study, we purified and characterized tetra- and triglycosyl glycolipids (GL-1 and GL-2, respectively) from two different colonial forms of Thermus scotoductus X-1, from T. filiformis Tok4 A2, and from T. oshimai SPS-11. Acid hydrolysis of the purified glycolipids liberated, in addition to the expected long-chain fatty acids, two components which were identified by gas chromatography-mass spectrometry as 16-methylheptadecane-1,2-diol and 15-methylheptadecane-1,2-diol. Fast atom bombardment mass spectrometry of the intact glycolipids indicated that a major proportion consisted of components with glycan head groups linked to long-chain 1,2-diols rather than to glycerol, although in all cases glycerol-linked compounds containing similar glycan head groups were also present. As in other Thermus strains, the polar head group of GL-1 from T. filiformis Tok4 A2 and from T. scotoductus X-1 colony type t2 was a glucosylgalactosyl-(N-acyl)glucosaminylglucosyl moiety. However, GL-2 from T. scotoductus X-1 colony type t1 and from T. oshimai SPS-11 was a truncated analog which lacked the nonreducing terminal glucose. Long-chain 1,2-diols have been previously reported in the polar lipids of Thermomicrobium roseum and (possibly) Chloroflexus aurantiacus, but to our knowledge, this is the first report of their detection in other bacteria and the first account of the structural determination of long-chain diol-linked glycolipids.
Full Text
The Full Text of this article is available as a PDF (965.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Carreto L., Wait R., Nobre M. F., da Costa M. S. Determination of the structure of a novel glycolipid from Thermus aquaticus 15004 and demonstration that hydroxy fatty acids are amide linked to glycolipids in Thermus spp. J Bacteriol. 1996 Nov;178(22):6479–6486. doi: 10.1128/jb.178.22.6479-6486.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dell A. Preparation and desorption mass spectrometry of permethyl and peracetyl derivatives of oligosaccharides. Methods Enzymol. 1990;193:647–660. doi: 10.1016/0076-6879(90)93443-o. [DOI] [PubMed] [Google Scholar]
- Gupta R. S., Bustard K., Falah M., Singh D. Sequencing of heat shock protein 70 (DnaK) homologs from Deinococcus proteolyticus and Thermomicrobium roseum and their integration in a protein-based phylogeny of prokaryotes. J Bacteriol. 1997 Jan;179(2):345–357. doi: 10.1128/jb.179.2.345-357.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Klein R. A., Hazlewood G. P., Kemp P., Dawson R. M. A new series of long-chain dicarboxylic acids with vicinal dimethyl branching found as major components of the lipids of Butyrivibrio spp. Biochem J. 1979 Dec 1;183(3):691–700. doi: 10.1042/bj1830691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maclean D. J., Scott K. J. Identification of glucitol (sorbitol) and ribitol in a rust fungus, Puccinia graminis f. sp. tritici. J Gen Microbiol. 1976 Nov;97(1):83–89. doi: 10.1099/00221287-97-1-83. [DOI] [PubMed] [Google Scholar]
- Mueller D. R., Domon B. M., Blum W., Raschdorf F., Richter W. J. Direct stereochemical assignment of sugar subunits in naturally occurring glycosides by low energy collision induced dissociation. Application to papulacandin antibiotics. Biomed Environ Mass Spectrom. 1988 Apr 15;15(8):441–446. doi: 10.1002/bms.1200150805. [DOI] [PubMed] [Google Scholar]
- Oshima M., Yamakawa T. Chemical structure of a novel glycolipid from an extreme thermophile, Flavobacterium thermophilum. Biochemistry. 1974 Mar 12;13(6):1140–1146. doi: 10.1021/bi00703a014. [DOI] [PubMed] [Google Scholar]
- Pask-Hughes R. A., Mozaffary H., Shaw N. Glycolipis in prokaryotic cells. Biochem Soc Trans. 1977;5(6):1675–1677. doi: 10.1042/bst0051675. [DOI] [PubMed] [Google Scholar]
- Pask-Hughes R. A., Shaw N. Glycolipids from some extreme thermophilic bacteria belonging to the genus Thermus. J Bacteriol. 1982 Jan;149(1):54–58. doi: 10.1128/jb.149.1.54-58.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pond J. L., Langworthy T. A. Effect of growth temperature on the long-chain diols and fatty acids of Thermomicrobium roseum. J Bacteriol. 1987 Mar;169(3):1328–1330. doi: 10.1128/jb.169.3.1328-1330.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pond J. L., Langworthy T. A., Holzer G. Long-chain diols: a new class of membrane lipids from a thermophilic bacterium. Science. 1986 Mar 7;231(4742):1134–1136. doi: 10.1126/science.231.4742.1134. [DOI] [PubMed] [Google Scholar]
- Richter W. J., Müller D. R., Domon B. Tandem mass spectrometry in structural characterization of oligosaccharide residues in glycoconjugates. Methods Enzymol. 1990;193:607–623. doi: 10.1016/0076-6879(90)93441-m. [DOI] [PubMed] [Google Scholar]
- Tenreiro S., Nobre M. F., Hoste B., Gillis M., Kristjansson J. K., da Costa M. S. DNA:DNA hybridization and chemotaxonomic studies of Thermus scotoductus. Res Microbiol. 1995 May;146(4):315–324. doi: 10.1016/0923-2508(96)81054-0. [DOI] [PubMed] [Google Scholar]
- Weisburg W. G., Giovannoni S. J., Woese C. R. The Deinococcus-Thermus phylum and the effect of rRNA composition on phylogenetic tree construction. Syst Appl Microbiol. 1989;11:128–134. doi: 10.1016/s0723-2020(89)80051-7. [DOI] [PubMed] [Google Scholar]
- Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]