Skip to main content
British Medical Journal logoLink to British Medical Journal
. 1971 Jul 3;3(5765):9–12. doi: 10.1136/bmj.3.5765.9

Mechanism of Hyperventilation in Acute Cerebrovascular Accidents

D J Lane, M W Rout, D H Williamson
PMCID: PMC1800058  PMID: 5091917

Abstract

Lumbar cerebrospinal fluid and arterial blood acid-base state were assessed in 19 patients within 24 hours of an acute cerebrovascular accident. Those with haemorrhage into the C.S.F. showed a lower C.S.F. pH and higher C.S.F. lactate than those without haemorrhage but the Pco2, was similar in the two groups, suggesting that this greater C.S.F. acidity was not responsible for a greater degree of hyperventilation. In those without haemorrhage an inverse relation was found between C.S.F. pH and arterial Pco2, suggesting that a non-chemical ventilatory drive—for example, due to central neurological damage—was responsible for the acid-base changes observed.

Full text

PDF
9

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradley R. D., Semple S. J., Spencer G. T. Rate of change of carbon dioxide tension in arterial blood, jugular venous blood and cisternal cerebrospinal fluid on carbon dioxide administration. J Physiol. 1965 Aug;179(3):442–455. doi: 10.1113/jphysiol.1965.sp007672. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. FISHER V. J., CHRISTIANSON L. C. Cerebrospinal fluid acidbase balance during a changing ventilatory state in man. J Appl Physiol. 1963 Jul;18:712–716. doi: 10.1152/jappl.1963.18.4.712. [DOI] [PubMed] [Google Scholar]
  3. Froman C., Smith A. C. Hyperventilation associated with low pH of cerebrospinal fluid after intracranial haemorrhage. Lancet. 1966 Apr 9;1(7441):780–782. doi: 10.1016/s0140-6736(66)91859-9. [DOI] [PubMed] [Google Scholar]
  4. Froman C., Smith A. C. Metabolic acidosis of the cerebrospinal fluid associated with subarachnoid haemorrhage. Lancet. 1967 May 6;1(7497):965–967. doi: 10.1016/s0140-6736(67)92354-9. [DOI] [PubMed] [Google Scholar]
  5. HOHORST H. J., KREUTZ F. H., BUECHER T. [On the metabolite content and the metabolite concentration in the liver of the rat]. Biochem Z. 1959;332:18–46. [PubMed] [Google Scholar]
  6. Haldane J. S., Poulton E. P. The effects of want of exygen on respiration. J Physiol. 1908 Dec 15;37(5-6):390–407. doi: 10.1113/jphysiol.1908.sp001280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Lane D. J., Howell J. B., Stretton T. B. The effect of dichlorphenamide on blood and cerebrospinal fluid acid-base state in chronic ventilatory failure. Clin Sci. 1970 Sep;39(3):391–406. doi: 10.1042/cs0390391. [DOI] [PubMed] [Google Scholar]
  8. Leusen I., Demeester G. Lactate and pyruvate in the brain of rats during hyperventilation. Arch Int Physiol Biochim. 1966 Feb;74(1):25–34. doi: 10.3109/13813456609059887. [DOI] [PubMed] [Google Scholar]
  9. Owen O. E., Morgan A. P., Kemp H. G., Sullivan J. M., Herrera M. G., Cahill G. F., Jr Brain metabolism during fasting. J Clin Invest. 1967 Oct;46(10):1589–1595. doi: 10.1172/JCI105650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PLUM F., SWANSON A. G. Central neurogenic hyperventilation in man. AMA Arch Neurol Psychiatry. 1959 May;81(5):535–549. doi: 10.1001/archneurpsyc.1959.02340170001001. [DOI] [PubMed] [Google Scholar]
  11. Rout M. W., Lane D. J., Wollner L. Prognosis in acute cerebrovascular accidents in relation to respiratory pattern and blood gas tensions. Br Med J. 1971 Jul 3;3(5765):7–9. doi: 10.1136/bmj.3.5765.7. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Medical Journal are provided here courtesy of BMJ Publishing Group

RESOURCES