Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1995 Sep;57(3):651–660.

A Genetic Polymorphism in Coumarin 7-Hydroxylation: Sequence of the Human CYP2A Gnes and Identification of Variant CYP2A6 Alleles

Pedro Fernandez-Salguero, Susan M G Hoffman, Suzanne Cholerton, Harvey Mohrenweiser, Hannu Raunio, Arja Rautio, Olavi Pelkonen, Jin-ding Huang, William E Evans, Jeffrey R Idle, Frank J Gonzalez
PMCID: PMC1801261  PMID: 7668294

Abstract

A group of human cytochrome P450 genes encompassing the CYP2A, CYP2B, and CYP2F subfamilies were cloned and assembled into a 350-kb contig localized on the long arm of chromosome 19. Three complete CYP2A genes—CYP2A6, CYP2A7, and CYP2A13—plus two pseudogenes truncated after exon 5, were identified and sequenced. A variant CYP2A6 allele that differed from the corresponding CYP2A6 and CYP2A7 cDNAs previously sequenced was found and was designated CYP2A6ν2. Sequence differences in the CYP2A6ν2 gene are restricted to regions encompassing exons 3, 6, and 8, which bear sequence relatedness with the corresponding exons of the CYP2A7 gene, located downstream and centromeric of CYP2A6ν2, suggesting recent gene-conversion events. The sequencing of all the CYP2A genes allowed the design of a PCR diagnostic test for the normal CYP2A6 allele, the CYP2A6ν2 allele, and a variant—designated CYP2A6ν1—that encodes an enzyme with a single inactivating amino acid change. These variant alleles were found in individuals who were deficient in their ability to metabolize the CYP2A6 probe drug coumarin. The allelic frequencies of CYP2A6ν1 and CYP2A6ν2 differed significantly between Caucasian, Asian, and African-American populations. These studies establish the existence of a new cytochrome P450 genetic polymorphism.

Full text

PDF
655

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bale A. E., Mitchell A. L., Gonzalez F. J., McBride O. W. Localization of CYP2F1 by multipoint linkage analysis and pulsed-field gel electrophoresis. Genomics. 1991 May;10(1):284–286. doi: 10.1016/0888-7543(91)90514-f. [DOI] [PubMed] [Google Scholar]
  2. Carrano A. V., Lamerdin J., Ashworth L. K., Watkins B., Branscomb E., Slezak T., Raff M., de Jong P. J., Keith D., McBride L. A high-resolution, fluorescence-based, semiautomated method for DNA fingerprinting. Genomics. 1989 Feb;4(2):129–136. doi: 10.1016/0888-7543(89)90291-7. [DOI] [PubMed] [Google Scholar]
  3. Cashman J. R., Park S. B., Yang Z. C., Wrighton S. A., Jacob P., 3rd, Benowitz N. L. Metabolism of nicotine by human liver microsomes: stereoselective formation of trans-nicotine N'-oxide. Chem Res Toxicol. 1992 Sep-Oct;5(5):639–646. doi: 10.1021/tx00029a008. [DOI] [PubMed] [Google Scholar]
  4. Cholerton S., Idle M. E., Vas A., Gonzalez F. J., Idle J. R. Comparison of a novel thin-layer chromatographic-fluorescence detection method with a spectrofluorometric method for the determination of 7-hydroxycoumarin in human urine. J Chromatogr. 1992 Mar 27;575(2):325–330. doi: 10.1016/0378-4347(92)80166-n. [DOI] [PubMed] [Google Scholar]
  5. Ding S., Lake B. G., Friedberg T., Wolf C. R. Expression and alternative splicing of the cytochrome P-450 CYP2A7. Biochem J. 1995 Feb 15;306(Pt 1):161–166. doi: 10.1042/bj3060161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Evans W. E., Relling M. V., Rahman A., McLeod H. L., Scott E. P., Lin J. S. Genetic basis for a lower prevalence of deficient CYP2D6 oxidative drug metabolism phenotypes in black Americans. J Clin Invest. 1993 May;91(5):2150–2154. doi: 10.1172/JCI116441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gonzalez F. J. Human cytochromes P450: problems and prospects. Trends Pharmacol Sci. 1992 Sep;13(9):346–352. doi: 10.1016/0165-6147(92)90107-h. [DOI] [PubMed] [Google Scholar]
  8. Gonzalez F. J., Nebert D. W. Evolution of the P450 gene superfamily: animal-plant 'warfare', molecular drive and human genetic differences in drug oxidation. Trends Genet. 1990 Jun;6(6):182–186. doi: 10.1016/0168-9525(90)90174-5. [DOI] [PubMed] [Google Scholar]
  9. Kapitulnik J., Popper P. J., Conney A. H. Comparative metabolism of benzo[a]pyrene and drugs in human liver. Clin Pharmacol Ther. 1977 Feb;21(2):166–176. doi: 10.1002/cpt1977212166. [DOI] [PubMed] [Google Scholar]
  10. Lindberg R. L., Negishi M. Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature. 1989 Jun 22;339(6226):632–634. doi: 10.1038/339632a0. [DOI] [PubMed] [Google Scholar]
  11. Matsunaga E., Umeno M., Gonzalez F. J. The rat P450 IID subfamily: complete sequences of four closely linked genes and evidence that gene conversions maintained sequence homogeneity at the heme-binding region of the cytochrome P450 active site. J Mol Evol. 1990 Feb;30(2):155–169. doi: 10.1007/BF02099942. [DOI] [PubMed] [Google Scholar]
  12. Maurice M., Emiliani S., Dalet-Beluche I., Derancourt J., Lange R. Isolation and characterization of a cytochrome P450 of the IIA subfamily from human liver microsomes. Eur J Biochem. 1991 Sep 1;200(2):511–517. doi: 10.1111/j.1432-1033.1991.tb16212.x. [DOI] [PubMed] [Google Scholar]
  13. Miles J. S., McLaren A. W., Forrester L. M., Glancey M. J., Lang M. A., Wolf C. R. Identification of the human liver cytochrome P-450 responsible for coumarin 7-hydroxylase activity. Biochem J. 1990 Apr 15;267(2):365–371. doi: 10.1042/bj2670365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Nelson D. R., Kamataki T., Waxman D. J., Guengerich F. P., Estabrook R. W., Feyereisen R., Gonzalez F. J., Coon M. J., Gunsalus I. C., Gotoh O. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 1993 Jan-Feb;12(1):1–51. doi: 10.1089/dna.1993.12.1. [DOI] [PubMed] [Google Scholar]
  15. Ohta T. Role of gene duplication in evolution. Genome. 1989;31(1):304–310. doi: 10.1139/g89-048. [DOI] [PubMed] [Google Scholar]
  16. Pelkonen O., Sotaniemi E. A., Ahokas J. T. Coumarin 7-hydroxylase activity in human liver microsomes. Properties of the enzyme and interspecies comparisons. Br J Clin Pharmacol. 1985 Jan;19(1):59–66. doi: 10.1111/j.1365-2125.1985.tb02613.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Raunio H., Syngelmä T., Pasanen M., Juvonen R., Honkakoski P., Kairaluoma M. A., Sotaniemi E., Lang M. A., Pelkonen O. Immunochemical and catalytical studies on hepatic coumarin 7-hydroxylase in man, rat, and mouse. Biochem Pharmacol. 1988 Oct 15;37(20):3889–3895. doi: 10.1016/0006-2952(88)90070-6. [DOI] [PubMed] [Google Scholar]
  18. Rautio A., Kraul H., Kojo A., Salmela E., Pelkonen O. Interindividual variability of coumarin 7-hydroxylation in healthy volunteers. Pharmacogenetics. 1992 Oct;2(5):227–233. doi: 10.1097/00008571-199210000-00005. [DOI] [PubMed] [Google Scholar]
  19. Yamano S., Tatsuno J., Gonzalez F. J. The CYP2A3 gene product catalyzes coumarin 7-hydroxylation in human liver microsomes. Biochemistry. 1990 Feb 6;29(5):1322–1329. doi: 10.1021/bi00457a031. [DOI] [PubMed] [Google Scholar]
  20. Yun C. H., Shimada T., Guengerich F. P. Purification and characterization of human liver microsomal cytochrome P-450 2A6. Mol Pharmacol. 1991 Nov;40(5):679–685. [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES