Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 May;59(5):1325–1331. doi: 10.1128/aem.59.5.1325-1331.1993

H2-CO2-Dependent Anaerobic O-Demethylation Activity in Subsurface Sediments and by an Isolated Bacterium

Shi Liu 1, Joseph M Suflita 1,*
PMCID: PMC182084  PMID: 16348928

Abstract

The ability of microorganisms in sediments from the Atlantic Coastal Plain to biodegrade methoxylated aromatic compounds was examined. O-demethylation activity was detected in deep (121- and 406-m) sediments, as well as in the surface soil. A syringate-demethylating consortium, containing at least three types of bacteria, was enriched from a deep-sediment sample in a medium containing syringate as the sole organic carbon source and with a N2-CO2 atmosphere. An isolate which demethylated syringate was obtained from the enrichment on an agar medium incubated under a H2-CO2 but not a N2-CO2 or N2 atmosphere. O demethylation of syringate of this isolate was dependent on the presence of both H2 and CO2 in the gas phase. The metabolism of syringate occurred in a sequential manner: methylgallate accumulated transiently before it was converted to gallate. Mass balance analysis suggests that the stoichiometry of the reaction in this isolate proceeds in accordance with the following generalized equation: C7H3O3(OCH3)n- + nHCO3- + nH2 → C7H3O3(OH)n- + nCH3COO- + nH2O.

Full text

PDF
1326

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brauman A., Kane M. D., Labat M., Breznak J. A. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science. 1992 Sep 4;257(5075):1384–1387. doi: 10.1126/science.257.5075.1384. [DOI] [PubMed] [Google Scholar]
  2. Braun K., Gottschalk G. Effect of molecular hydrogen and carbon dioxide on chemo-organotrophic growth of Acetobacterium woodii and Clostridium aceticum. Arch Microbiol. 1981 Jan;128(3):294–298. doi: 10.1007/BF00422533. [DOI] [PubMed] [Google Scholar]
  3. Daniel S. L., Keith E. S., Yang H., Lin Y. S., Drake H. L. Utilization of methoxylated aromatic compounds by the acetogen Clostridium thermoaceticum: expression and specificity of the co-dependent O-demethylating activity. Biochem Biophys Res Commun. 1991 Oct 15;180(1):416–422. doi: 10.1016/s0006-291x(05)81309-9. [DOI] [PubMed] [Google Scholar]
  4. DeWeerd K. A., Concannon F., Suflita J. M. Relationship between hydrogen consumption, dehalogenation, and the reduction of sulfur oxyanions by Desulfomonile tiedjei. Appl Environ Microbiol. 1991 Jul;57(7):1929–1934. doi: 10.1128/aem.57.7.1929-1934.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. DeWeerd K. A., Saxena A., Nagle D. P., Jr, Suflita J. M. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. Appl Environ Microbiol. 1988 May;54(5):1237–1242. doi: 10.1128/aem.54.5.1237-1242.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kane M. D., Breznak J. A. Acetonema longum gen. nov. sp. nov., an H2/CO2 acetogenic bacterium from the termite, Pterotermes occidentis. Arch Microbiol. 1991;156(2):91–98. doi: 10.1007/BF00290979. [DOI] [PubMed] [Google Scholar]
  7. Kerby R., Zeikus J. G. Anaerobic catabolism of formate to acetate and CO2 by Butyribacterium methylotrophicum. J Bacteriol. 1987 May;169(5):2063–2068. doi: 10.1128/jb.169.5.2063-2068.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Krumholz L. R., Crawford R. L., Hemling M. E., Bryant M. P. Metabolism of gallate and phloroglucinol in Eubacterium oxidoreducens via 3-hydroxy-5-oxohexanoate. J Bacteriol. 1987 May;169(5):1886–1890. doi: 10.1128/jb.169.5.1886-1890.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lajoie S. F., Bank S., Miller T. L., Wolin M. J. Acetate production from hydrogen and [13C]carbon dioxide by the microflora of human feces. Appl Environ Microbiol. 1988 Nov;54(11):2723–2727. doi: 10.1128/aem.54.11.2723-2727.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Matin A. Organic nutrition of chemolithotrophic bacteria. Annu Rev Microbiol. 1978;32:433–468. doi: 10.1146/annurev.mi.32.100178.002245. [DOI] [PubMed] [Google Scholar]
  11. Shelton D. R., Tiedje J. M. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic Acid. Appl Environ Microbiol. 1984 Oct;48(4):840–848. doi: 10.1128/aem.48.4.840-848.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Tasaki M., Kamagata Y., Nakamura K., Mikami E. Utilization of methoxylated benzoates and formation of intermediates by Desulfotomaculum thermobenzoicum in the presence or absence of sulfate. Arch Microbiol. 1992;157(3):209–212. doi: 10.1007/BF00245151. [DOI] [PubMed] [Google Scholar]
  13. Taylor B. F. Aerobic and Anaerobic Catabolism of Vanillic Acid and Some Other Methoxy-Aromatic Compounds by Pseudomonas sp. Strain PN-1. Appl Environ Microbiol. 1983 Dec;46(6):1286–1292. doi: 10.1128/aem.46.6.1286-1292.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wu Z. R., Daniel S. L., Drake H. L. Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum. J Bacteriol. 1988 Dec;170(12):5747–5750. doi: 10.1128/jb.170.12.5747-5750.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES