Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Jul;59(7):2139–2144. doi: 10.1128/aem.59.7.2139-2144.1993

Hydroxylation and biodegradation of 6-methylquinoline by pseudomonads in aqueous and nonaqueous immobilized-cell bioreactors.

S Rothenburger 1, R M Atlas 1
PMCID: PMC182248  PMID: 8357249

Abstract

Selective culturing of pseudomonads that could degrade quinoline led to enrichment cultures and pure cultures with expanded substrate utilization and transformation capabilities for substituted quinolines in immobilized and batch cultures. Immobilized cells of the pseudomonad cultures rapidly transformed quinolines to hydroxyquinolines in bioreactors and were able to tolerate higher substrate concentrations compared with batch cultures. After prolonged incubation on a mixture of quinoline and 6-methylquinoline, a quinoline-degrading culture of Pseudomonas putida developed the ability to biodegrade 6-methylquinoline, which initially was resistant to microbial attack, as a sole source of carbon and energy. 6-Methylquinoline was also degraded in a nonaqueous solution by this strain of P. putida when a solution of 6-methylquinoline in decane was flowed through an immobilized-cell fixed-bed bioreactor.

Full text

PDF
2139

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aislabie J., Bej A. K., Hurst H., Rothenburger S., Atlas R. M. Microbial degradation of quinoline and methylquinolines. Appl Environ Microbiol. 1990 Feb;56(2):345–351. doi: 10.1128/aem.56.2.345-351.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Aislabie J., Rothenburger S., Atlas R. M. Isolation of microorganisms capable of degrading isoquinoline under aerobic conditions. Appl Environ Microbiol. 1989 Dec;55(12):3247–3249. doi: 10.1128/aem.55.12.3247-3249.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dordick J. S. Non-aqueous enzymology. Curr Opin Biotechnol. 1991 Jun;2(3):401–407. doi: 10.1016/s0958-1669(05)80146-6. [DOI] [PubMed] [Google Scholar]
  4. Folsom B. R., Chapman P. J. Performance characterization of a model bioreactor for the biodegradation of trichloroethylene by Pseudomonas cepacia G4. Appl Environ Microbiol. 1991 Jun;57(6):1602–1608. doi: 10.1128/aem.57.6.1602-1608.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goswami U. C., Barua A. B. Intestinal conversion of lutein into 3-dehydroretinol in freshwater fish, Heteropneustes fossilis & Channa straitus. Indian J Biochem Biophys. 1981 Feb;18(1):88–88. [PubMed] [Google Scholar]
  6. Heitkamp M. A., Camel V., Reuter T. J., Adams W. J. Biodegradation of p-nitrophenol in an aqueous waste stream by immobilized bacteria. Appl Environ Microbiol. 1990 Oct;56(10):2967–2973. doi: 10.1128/aem.56.10.2967-2973.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mueller J. G., Middaugh D. P., Lantz S. E., Chapman P. J. Biodegradation of creosote and pentachlorophenol in contaminated groundwater: chemical and biological assessment. Appl Environ Microbiol. 1991 May;57(5):1277–1285. doi: 10.1128/aem.57.5.1277-1285.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. O'Reilly K. T., Crawford R. L. Degradation of pentachlorophenol by polyurethane-immobilized Flavobacterium cells. Appl Environ Microbiol. 1989 Sep;55(9):2113–2118. doi: 10.1128/aem.55.9.2113-2118.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Shukla O. P. Microbial transformation of quinoline by a Pseudomonas sp. Appl Environ Microbiol. 1986 Jun;51(6):1332–1342. doi: 10.1128/aem.51.6.1332-1342.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Stormo K. E., Crawford R. L. Preparation of encapsulated microbial cells for environmental applications. Appl Environ Microbiol. 1992 Feb;58(2):727–730. doi: 10.1128/aem.58.2.727-730.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES