Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Aug;59(8):2666–2672. doi: 10.1128/aem.59.8.2666-2672.1993

Nonenzymatic Glycosylation of Lepidopteran-Active Bacillus thuringiensis Protein Crystals

Meenakshi Bhattacharya 1, Bradley A Plantz 1, Jane D Swanson-Kobler 1,, Kenneth W Nickerson 1,*
PMCID: PMC182336  PMID: 16349021

Abstract

We used high-pH anion-exchange chromatography with pulsed amperometric detection to quantify the monosaccharides covalently attached to Bacillus thuringiensis HD-1 (Dipel) crystals. The crystals contained 0.54% sugars, including, in decreasing order of prevalence, glucose, fucose, arabinose/rhamnose, galactose, galactosamine, glucosamine, xylose, and mannose. Three lines of evidence indicated that these sugars arose from nonenzymatic glycosylation: (i) the sugars could not be removed by N- or O-glycanases; (ii) the sugars attached were influenced both by the medium in which the bacteria had been grown and by the time at which the crystals were harvested; and (iii) the chemical identity and stoichiometry of the sugars detected did not fit any known glycoprotein models. Thus, the sugars detected were the product of fermentation conditions rather than bacterial genetics. The implications of these findings are discussed in terms of crystal chemistry, fermentation technology, and the efficacy of B. thuringiensis as a microbial insecticide.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ang B. J., Nickerson K. W. Purification of the protein crystal from Bacillus thuringiensis by zonal gradient centrifugation. Appl Environ Microbiol. 1978 Oct;36(4):625–626. doi: 10.1128/aem.36.4.625-626.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Angsuthanasombat C., Panyim S. Biosynthesis of 130-kilodalton mosquito larvicide in the cyanobacterium Agmenellum quadruplicatum PR-6. Appl Environ Microbiol. 1989 Sep;55(9):2428–2430. doi: 10.1128/aem.55.9.2428-2430.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aronson J. N., Arvidson H. C. Toxic Trypsin Digest Fragment from the Bacillus thuringiensis Parasporal Protein. Appl Environ Microbiol. 1987 Feb;53(2):416–421. doi: 10.1128/aem.53.2.416-421.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barton K. A., Whiteley H. R., Yang N. S. Bacillus thuringiensis section sign-Endotoxin Expressed in Transgenic Nicotiana tabacum Provides Resistance to Lepidopteran Insects. Plant Physiol. 1987 Dec;85(4):1103–1109. doi: 10.1104/pp.85.4.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bulla L. A., Jr, Kramer K. J., Davidson L. I. Characterization of the entomocidal parasporal crystal of Bacillus thuringiensis. J Bacteriol. 1977 Apr;130(1):375–383. doi: 10.1128/jb.130.1.375-383.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Calabrese D. M., Nickerson K. W., Lane L. C. A comparison of protein crystal subunit sizes in Bacillus thuringiensis. Can J Microbiol. 1980 Aug;26(8):1006–1010. doi: 10.1139/m80-170. [DOI] [PubMed] [Google Scholar]
  7. Choma C. T., Kaplan H. Bacillus thuringiensis crystal protein: effect of chemical modification of the cysteine and lysine residues. J Invertebr Pathol. 1992 Jan;59(1):75–80. doi: 10.1016/0022-2011(92)90114-j. [DOI] [PubMed] [Google Scholar]
  8. Dadd R. H. Alkalinity within the midgut of mosquito larvae with alkaline-active digestive enzymes. J Insect Physiol. 1975 Nov;21(11):1847–1853. doi: 10.1016/0022-1910(75)90252-8. [DOI] [PubMed] [Google Scholar]
  9. Day J. F., Thornburg R. W., Thorpe S. R., Baynes J. W. Nonenzymatic glucosylation of rat albumin. Studies in vitro and in vivo. J Biol Chem. 1979 Oct 10;254(19):9394–9400. [PubMed] [Google Scholar]
  10. Dolhofer R., Wieland O. H. Glycosylation of serum albumin: elevated glycosyl-albumin in diabetic patients. FEBS Lett. 1979 Jul 15;103(2):282–286. doi: 10.1016/0014-5793(79)81345-9. [DOI] [PubMed] [Google Scholar]
  11. Dow J. A. Extremely high pH in biological systems: a model for carbonate transport. Am J Physiol. 1984 Apr;246(4 Pt 2):R633–R636. doi: 10.1152/ajpregu.1984.246.4.R633. [DOI] [PubMed] [Google Scholar]
  12. Ellwood D. C., Tempest D. W. Control of teichoic acid and teichuronic acid biosyntheses in chemostat cultures of Bacillus subtilis var. niger. Biochem J. 1969 Jan;111(1):1–5. doi: 10.1042/bj1110001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Hardy M. R., Townsend R. R., Lee Y. C. Monosaccharide analysis of glycoconjugates by anion exchange chromatography with pulsed amperometric detection. Anal Biochem. 1988 Apr;170(1):54–62. doi: 10.1016/0003-2697(88)90089-9. [DOI] [PubMed] [Google Scholar]
  14. Hofmann C., Vanderbruggen H., Höfte H., Van Rie J., Jansens S., Van Mellaert H. Specificity of Bacillus thuringiensis delta-endotoxins is correlated with the presence of high-affinity binding sites in the brush border membrane of target insect midguts. Proc Natl Acad Sci U S A. 1988 Nov;85(21):7844–7848. doi: 10.1073/pnas.85.21.7844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Holmes K. C., Monro R. E. Studies on the structure of parasporal inclusions from Bacillus thuringiensis. J Mol Biol. 1965 Dec;14(2):572–581. doi: 10.1016/s0022-2836(65)80205-4. [DOI] [PubMed] [Google Scholar]
  16. Huang L., Forsberg C. W., Thomas D. Y. Purification and characterization of a chloride-stimulated cellobiosidase from Bacteroides succinogenes S85. J Bacteriol. 1988 Jul;170(7):2923–2932. doi: 10.1128/jb.170.7.2923-2932.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Höfte H., Whiteley H. R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol Rev. 1989 Jun;53(2):242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Iberg N., Flückiger R. Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites. J Biol Chem. 1986 Oct 15;261(29):13542–13545. [PubMed] [Google Scholar]
  19. Insell J. P., Fitz-James P. C. Composition and Toxicity of the Inclusion of Bacillus thuringiensis subsp. israelensis. Appl Environ Microbiol. 1985 Jul;50(1):56–62. doi: 10.1128/aem.50.1.56-62.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Lecadet M. M. Action comparée de l'urée et du thioglycolate sur la toxine figurée de Bacillus thuringiensis. C R Acad Sci Hebd Seances Acad Sci D. 1967 Jun 12;264(24):2847–2850. [PubMed] [Google Scholar]
  22. Lechner J., Wieland F. Structure and biosynthesis of prokaryotic glycoproteins. Annu Rev Biochem. 1989;58:173–194. doi: 10.1146/annurev.bi.58.070189.001133. [DOI] [PubMed] [Google Scholar]
  23. Martin P. A., Travers R. S. Worldwide Abundance and Distribution of Bacillus thuringiensis Isolates. Appl Environ Microbiol. 1989 Oct;55(10):2437–2442. doi: 10.1128/aem.55.10.2437-2442.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Messner P., Sleytr U. B. Bacterial surface layer glycoproteins. Glycobiology. 1991 Dec;1(6):545–551. doi: 10.1093/glycob/1.6.545. [DOI] [PubMed] [Google Scholar]
  25. Messner P., Sleytr U. B. Crystalline bacterial cell-surface layers. Adv Microb Physiol. 1992;33:213–275. doi: 10.1016/s0065-2911(08)60218-0. [DOI] [PubMed] [Google Scholar]
  26. Narasu M. L., Gopinathan K. P. Purification of larvicidal protein from Bacillus sphaericus 1593. Biochem Biophys Res Commun. 1986 Dec 15;141(2):756–761. doi: 10.1016/s0006-291x(86)80237-6. [DOI] [PubMed] [Google Scholar]
  27. Nickerson K. W., St Julian G., Bulla L. A., Jr Physiology of sporeforming bacteria associated with insects: radiorespirometric survey of carbohydrate metabolism in the 12 serotypes of Bacillus thuringiensis. Appl Microbiol. 1974 Jul;28(1):129–132. doi: 10.1128/am.28.1.129-132.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Obukowicz M. G., Perlak F. J., Kusano-Kretzmer K., Mayer E. J., Watrud L. S. Integration of the delta-endotoxin gene of Bacillus thuringiensis into the chromosome of root-colonizing strains of pseudomonads using Tn5. Gene. 1986;45(3):327–331. doi: 10.1016/0378-1119(86)90031-4. [DOI] [PubMed] [Google Scholar]
  29. Pfannenstiel M. A., Couche G. A., Muthukumar G., Nickerson K. W. Stability of the larvicidal activity of Bacillus thuringiensis subsp. israelensis: amino acid modification and denaturants. Appl Environ Microbiol. 1985 Nov;50(5):1196–1199. doi: 10.1128/aem.50.5.1196-1199.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Pfannenstiel M. A., Muthukumar G., Couche G. A., Nickerson K. W. Amino sugars in the glycoprotein toxin from Bacillus thuringiensis subsp. israelensis. J Bacteriol. 1987 Feb;169(2):796–801. doi: 10.1128/jb.169.2.796-801.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Scherrer P., Lüthy P., Trumpi B. Production of -endotoxin by Bacillus thuringiensis as a function of glucose concentrations. Appl Microbiol. 1973 Apr;25(4):644–646. doi: 10.1128/am.25.4.644-646.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Thanabalu T., Hindley J., Brenner S., Oei C., Berry C. Expression of the mosquitocidal toxins of Bacillus sphaericus and Bacillus thuringiensis subsp. israelensis by recombinant Caulobacter crescentus, a vehicle for biological control of aquatic insect larvae. Appl Environ Microbiol. 1992 Mar;58(3):905–910. doi: 10.1128/aem.58.3.905-910.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Tyrell D. J., Bulla L. A., Jr, Andrews R. E., Jr, Kramer K. J., Davidson L. I., Nordin P. Comparative biochemistry of entomocidal parasporal crystals of selected Bacillus thuringiensis strains. J Bacteriol. 1981 Feb;145(2):1052–1062. doi: 10.1128/jb.145.2.1052-1062.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Van Rijssel M., Gerwig G. J., Hansen T. A. Isolation and characterization of an extracellular glycosylated protein complex from Clostridium thermosaccharolyticum with pectin methylesterase and polygalacturonate hydrolase activity. Appl Environ Microbiol. 1993 Mar;59(3):828–836. doi: 10.1128/aem.59.3.828-836.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Watson G. M., Mann N. H. Protein phosphorylation in Bacillus thuringiensis during growth and delta-endotoxin production. J Gen Microbiol. 1988 Sep;134(9):2559–2565. doi: 10.1099/00221287-134-9-2559. [DOI] [PubMed] [Google Scholar]
  36. White P. J., Gilvarg C. A teichuronic acid containing rhamnose from cell walls of Bacillus megaterium. Biochemistry. 1977 May 31;16(11):2428–2435. doi: 10.1021/bi00630a018. [DOI] [PubMed] [Google Scholar]
  37. Yan X. J., McCarthy W. J. Chemical modification of Bacillus thuringiensis subsp. thuringiensis (HD-524) trypsin-activated endotoxin: implication of tyrosine residues in lepidopteran cell lysis. J Invertebr Pathol. 1991 Jan;57(1):101–108. doi: 10.1016/0022-2011(91)90046-s. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES