Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1993 Oct;59(10):3509–3512. doi: 10.1128/aem.59.10.3509-3512.1993

Comparison of methods for specific depletion of ATP in Salmonella typhimurium.

M S Johnson 1, B L Taylor 1
PMCID: PMC182486  PMID: 8250574

Abstract

Three methods of ATP depletion in Salmonella typhimurium were compared. ATP concentrations were lowest after arsenate treatment. Arsenate or alpha-methylglucoside-plus-azide treatment nonspecifically lowered all nucleotide triphosphate levels. Histidine starvation in a hisF mutant was relatively specific for ATP depletion and therefore has potential in distinguishing ATP-dependent processes from processes dependent on other nucleotides.

Full text

PDF
3512

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aswad D. W., Koshland D. E., Jr Evidence for an S-adenosylmethionine requirement in the chemotactic behavior of Salmonella typhimurium. J Mol Biol. 1975 Sep 15;97(2):207–223. doi: 10.1016/s0022-2836(75)80035-0. [DOI] [PubMed] [Google Scholar]
  2. Chiariotti L., Alifano P., Carlomagno M. S., Bruni C. B. Nucleotide sequence of the Escherichia coli hisD gene and of the Escherichia coli and Salmonella typhimurium hisIE region. Mol Gen Genet. 1986 Jun;203(3):382–388. doi: 10.1007/BF00422061. [DOI] [PubMed] [Google Scholar]
  3. Galloway R. J., Taylor B. L. Histidine starvation and adenosine 5'-triphosphate depletion in chemotaxis of Salmonella typhimurium. J Bacteriol. 1980 Dec;144(3):1068–1075. doi: 10.1128/jb.144.3.1068-1075.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Garrick-Silversmith L., Hartman P. E. Histidine-requiring mutants of Escherichia coli K12. Genetics. 1970 Oct;66(2):231–244. doi: 10.1093/genetics/66.2.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Goldschmidt E. P., Cater M. S., Matney T. S., Butler M. A., Greene A. Genetic analysis of the histidine operon in Escherichia coli K12. Genetics. 1970 Oct;66(2):219–229. doi: 10.1093/genetics/66.2.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Johnston H. M., Roth J. R. Histidine mutants requiring adenine: selection of mutants with reduced hisG expression in Salmonella typhimurium. Genetics. 1979 May;92(1):1–15. doi: 10.1093/genetics/92.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Klein W. L., Boyer P. D. Energization of active transport by Escherichia coli. J Biol Chem. 1972 Nov 25;247(22):7257–7265. [PubMed] [Google Scholar]
  8. Koch A. L. Energy expenditure is obligatory for the downhill transport of galactosides. J Mol Biol. 1971 Aug 14;59(3):447–459. doi: 10.1016/0022-2836(71)90309-3. [DOI] [PubMed] [Google Scholar]
  9. Larsen S. H., Adler J., Gargus J. J., Hogg R. W. Chemomechanical coupling without ATP: the source of energy for motility and chemotaxis in bacteria. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1239–1243. doi: 10.1073/pnas.71.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lundin A., Thore A. Comparison of methods for extraction of bacterial adenine nucleotides determined by firefly assay. Appl Microbiol. 1975 Nov;30(5):713–721. doi: 10.1128/am.30.5.713-721.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Morton D. P., Parsons S. M. Inhibition of ATP phosphoribosyltransferase by AMP and ADP in the absence and presence of histidine. Arch Biochem Biophys. 1977 Jun;181(2):643–648. doi: 10.1016/0003-9861(77)90270-3. [DOI] [PubMed] [Google Scholar]
  12. Morton D. P., Parsons S. M. Synergistic inhibition of ATP phosphoribosyltransferase by guanosine tetraphosphate and histidine. Biochem Biophys Res Commun. 1977 Jan 10;74(1):172–177. doi: 10.1016/0006-291x(77)91390-0. [DOI] [PubMed] [Google Scholar]
  13. Payne S. H., Ames B. N. A procedure for rapid extraction and high-pressure liquid chromatographic separation of the nucleotides and other small molecules from bacterial cells. Anal Biochem. 1982 Jun;123(1):151–161. doi: 10.1016/0003-2697(82)90636-4. [DOI] [PubMed] [Google Scholar]
  14. SHEDLOVSKY A. E., MAGASANIK B. A defect in histidine biosynthesis causing an adenine deficiency. J Biol Chem. 1962 Dec;237:3725–3730. [PubMed] [Google Scholar]
  15. SHEDLOVSKY A. E., MAGASANIK B. The enzymatic basis of an adenine-histidine relationship in Escherichia coli. J Biol Chem. 1962 Dec;237:3731–3736. [PubMed] [Google Scholar]
  16. Shioi J. I., Galloway R. J., Niwano M., Chinnock R. E., Taylor B. L. Requirement of ATP in bacterial chemotaxis. J Biol Chem. 1982 Jul 25;257(14):7969–7975. [PubMed] [Google Scholar]
  17. Sterboul C. C., Kleeman J. E., Parsons S. M. Purification and characterization of a mutant ATP phosphoribosyltransferase hypersensitive to histidine feedback inhibition. Arch Biochem Biophys. 1977 Jun;181(2):632–642. doi: 10.1016/0003-9861(77)90269-7. [DOI] [PubMed] [Google Scholar]
  18. Ullah A. H., Ordal G. W. In vivo and in vitro chemotactic methylation in Bacillus subtilis. J Bacteriol. 1981 Feb;145(2):958–965. doi: 10.1128/jb.145.2.958-965.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES