Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Dec;58(12):4032–4037. doi: 10.1128/aem.58.12.4032-4037.1992

Purification and properties of NADP-dependent glutamate dehydrogenase from Ruminococcus flavefaciens FD-1.

P A Duncan 1, B A White 1, R I Mackie 1
PMCID: PMC183221  PMID: 1335719

Abstract

Glutamate dehydrogenase (GDH) (L-glutamate:NADP+ oxidoreductase, deaminating, EC 1.4.1.4) from the cellulolytic ruminal bacterium Ruminococcus flavefaciens has been purified and characterized. The native enzyme and subunit are 280 and 48 kDa, respectively, suggesting that the native enzyme is a hexamer. The enzyme requires 0.5 M KCl for optimal activity and has a pH optimum of 6.9 to 7.0. The Kms for ammonia, alpha-ketoglutarate, and glutamate are 19, 0.41, and 62 mM, respectively. The sigmoidal NADPH saturation curve revealed positive cooperativity for the binding of this coenzyme. The first residue in the N-terminal amino acid sequence from R. flavefaciens GDH was alanine, suggesting that the protein may be modified posttranslationally. Comparison of the N-terminal sequence with those of Escherichia coli, Salmonella typhimurium, and Clostridium symbiosum revealed only 39% amino acid homologies. The GDH from R. flavefaciens was unique in that its specific activity was highest during ammonia-limited growth but was not affected by ammonia shock treatment (20 mM).

Full text

PDF
4037

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison M. J. Biosynthesis of amono acids by ruminal microorganisms. J Anim Sci. 1969 Nov;29(5):797–807. doi: 10.2527/jas1969.295797x. [DOI] [PubMed] [Google Scholar]
  2. Bansal A., Dayton M. A., Zalkin H., Colman R. F. Affinity labeling of a glutamyl peptide in the coenzyme binding site of NADP+-specific glutamate dehydrogenase of Salmonella typhimurium by 2-[(4-bromo-2,3-dioxobutyl)thio]-1,N6-ethenoadenosine 2',5'-bisphosphate. J Biol Chem. 1989 Jun 15;264(17):9827–9835. [PubMed] [Google Scholar]
  3. Bellion E., Tan F. NADP-dependent glutamate dehydrogenase from a facultative methylotroph, Pseudomonas sp. strain AM1. J Bacteriol. 1984 Feb;157(2):435–439. doi: 10.1128/jb.157.2.435-439.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bernlohr R. W., Schreier H. J., Donohue T. J. Enzymes of glutamate and glutamine biosynthesis in Bacillus licheniformis. Curr Top Cell Regul. 1984;24:145–152. doi: 10.1016/b978-0-12-152824-9.50020-4. [DOI] [PubMed] [Google Scholar]
  5. Brenchley J. E., Baker C. A., Patil L. G. Regulation of the ammonia assimilatory enzymes in Salmonella typhimurium. J Bacteriol. 1975 Oct;124(1):182–189. doi: 10.1128/jb.124.1.182-189.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brenchley J. E., Prival M. J., Magasanik B. Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J Biol Chem. 1973 Sep 10;248(17):6122–6128. [PubMed] [Google Scholar]
  7. Bryant M. P. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr. 1972 Dec;25(12):1324–1328. doi: 10.1093/ajcn/25.12.1324. [DOI] [PubMed] [Google Scholar]
  8. CHANEY A. L., MARBACH E. P. Modified reagents for determination of urea and ammonia. Clin Chem. 1962 Apr;8:130–132. [PubMed] [Google Scholar]
  9. Caldwell D. R., Hudson R. F. Sodium, an obligate growth requirement for predominant rumen bacteria. Appl Microbiol. 1974 Mar;27(3):549–552. doi: 10.1128/am.27.3.549-552.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Coulton J. W., Kapoor M. Purification and some properties of the glutamate dehydrogenase of Salmonella typhimurium. Can J Microbiol. 1973 Apr;19(4):427–438. doi: 10.1139/m73-071. [DOI] [PubMed] [Google Scholar]
  11. Coulton J. W., Kapoor M. Studies on the kinetics and regulation of glutamate dehydrogenase of Salmonella typhimurium. Can J Microbiol. 1973 Apr;19(4):439–450. doi: 10.1139/m73-072. [DOI] [PubMed] [Google Scholar]
  12. Helaszek C. T., White B. A. Cellobiose uptake and metabolism by Ruminococcus flavefaciens. Appl Environ Microbiol. 1991 Jan;57(1):64–68. doi: 10.1128/aem.57.1.64-68.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kalb V. F., Jr, Bernlohr R. W. A new spectrophotometric assay for protein in cell extracts. Anal Biochem. 1977 Oct;82(2):362–371. doi: 10.1016/0003-2697(77)90173-7. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lilley K. S., Baker P. J., Britton K. L., Stillman T. J., Brown P. E., Moir A. J., Engel P. C., Rice D. W., Bell J. E., Bell E. The partial amino acid sequence of the NAD(+)-dependent glutamate dehydrogenase of Clostridium symbiosum: implications for the evolution and structural basis of coenzyme specificity. Biochim Biophys Acta. 1991 Nov 15;1080(3):191–197. doi: 10.1016/0167-4838(91)90001-g. [DOI] [PubMed] [Google Scholar]
  16. Mathison G. W., Milligan L. P. Nitrogen metabolism in sheep. Br J Nutr. 1971 May;25(3):351–366. doi: 10.1079/bjn19710100. [DOI] [PubMed] [Google Scholar]
  17. McPherson M. J., Wootton J. C. Complete nucleotide sequence of the Escherichia coli gdhA gene. Nucleic Acids Res. 1983 Aug 11;11(15):5257–5266. doi: 10.1093/nar/11.15.5257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Meers J. L., Tempest D. W., Brown C. M. 'Glutamine(amide):2-oxoglutarate amino transferase oxido-reductase (NADP); an enzyme involved in the synthesis of glutamate by some bacteria. J Gen Microbiol. 1970 Dec;64(2):187–194. doi: 10.1099/00221287-64-2-187. [DOI] [PubMed] [Google Scholar]
  19. Merril C. R., Goldman D., Sedman S. A., Ebert M. H. Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science. 1981 Mar 27;211(4489):1437–1438. doi: 10.1126/science.6162199. [DOI] [PubMed] [Google Scholar]
  20. Nagata S., Tanizawa K., Esaki N., Sakamoto Y., Ohshima T., Tanaka H., Soda K. Gene cloning and sequence determination of leucine dehydrogenase from Bacillus stearothermophilus and structural comparison with other NAD(P)+-dependent dehydrogenases. Biochemistry. 1988 Dec 13;27(25):9056–9062. doi: 10.1021/bi00425a026. [DOI] [PubMed] [Google Scholar]
  21. Patterson J. A., Hespell R. B. Glutamine synthetase activity in the ruminal bacterium Succinivibrio dextrinosolvens. Appl Environ Microbiol. 1985 Oct;50(4):1014–1020. doi: 10.1128/aem.50.4.1014-1020.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Phibbs P. V., Jr, Bernlohr R. W. Purification, properties, and regulation of glutamic dehydrogenase of Bacillus licheniformis. J Bacteriol. 1971 May;106(2):375–385. doi: 10.1128/jb.106.2.375-385.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Pilgrim A. F., Weller R. A., Gray F. V., Belling C. B. Synthesis of microbial protein from ammonia in the sheep's rumen and the proportion of dietary nitrogen converted into microbial nitrogen. Br J Nutr. 1970 Jun;24(2):589–598. doi: 10.1079/bjn19700057. [DOI] [PubMed] [Google Scholar]
  24. Russell J. B., Strobel H. J. Concentration of ammonia across cell membranes of mixed rumen bacteria. J Dairy Sci. 1987 May;70(5):970–976. doi: 10.3168/jds.S0022-0302(87)80101-7. [DOI] [PubMed] [Google Scholar]
  25. Sakamoto N., Kotre A. M., Savageau M. A. Glutamate dehydrogenase from Escherichia coli: purification and properties. J Bacteriol. 1975 Nov;124(2):775–783. doi: 10.1128/jb.124.2.775-783.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Smith C. J., Hespell R. B., Bryant M. P. Ammonia assimilation and glutamate formation in the anaerobe Selenomonas ruminantium. J Bacteriol. 1980 Feb;141(2):593–602. doi: 10.1128/jb.141.2.593-602.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Stillman T. J., Baker P. J., Britton K. L., Rice D. W., Rodgers H. F. Effect of additives on the crystallization of glutamate dehydrogenase from Clostridium symbiosum. Evidence for a ligand-induced conformational change. J Mol Biol. 1992 Apr 20;224(4):1181–1184. doi: 10.1016/0022-2836(92)90481-x. [DOI] [PubMed] [Google Scholar]
  28. Valle F., Becerril B., Chen E., Seeburg P., Heyneker H., Bolivar F. Complete nucleotide sequence of the glutamate dehydrogenase gene from Escherichia coli K-12. Gene. 1984 Feb;27(2):193–199. doi: 10.1016/0378-1119(84)90140-9. [DOI] [PubMed] [Google Scholar]
  29. Vancurová I., Vancura A., Volc J., Kopecký J., Neuzil J., Basarová G., Behal V. Purification and properties of NADP-dependent glutamate dehydrogenase from Streptomyces fradiae. J Gen Microbiol. 1989 Dec;135(12):3311–3318. doi: 10.1099/00221287-135-12-3311. [DOI] [PubMed] [Google Scholar]
  30. Varricchio F. Control of glutamate dehydrogenase synthesis in Escherichia coli. Biochim Biophys Acta. 1969 May 6;177(3):560–564. doi: 10.1016/0304-4165(69)90319-5. [DOI] [PubMed] [Google Scholar]
  31. Winnacker E. L., Barker H. A. Purification and properties of a NAD-dependent glutamate dehydrogenase from Clostridium SB4. Biochim Biophys Acta. 1970 Aug 15;212(2):225–242. doi: 10.1016/0005-2744(70)90203-2. [DOI] [PubMed] [Google Scholar]
  32. Yamamoto I., Saito H., Ishimoto M. Regulation of synthesis and reversible inactivation in vivo of dual coenzyme-specific glutamate dehydrogenase in Bacteroides fragilis. J Gen Microbiol. 1987 Oct;133(10):2773–2780. doi: 10.1099/00221287-133-10-2773. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES