Abstract
Some effects of visible light on the survival of Escherichia coli in waters of the Butrón river were studied by comparing illuminated and nonilluminated systems. The following count methods were used: CFU on a selective medium (eosin-methylene blue agar), CFU on a medium of recuperation (Trypticase soy agar with yeast extract and glucose), number of metabolically active cells by reduction of 2-(p-iodophenyl)-3-(p-nitrophenyl)-5-phenyl tetrazolium chloride (INT) to INT-formazan, and total number of E. coli cells as determined by the acridine orange direct-count method. In the illuminated systems, decreases in CFU of E. coli and in the number of metabolically active cells were observed. However, no decline of the total number of E. coli cells was observed. By count methods, different stages of progressive dormancy of E. coli cells were determined to exist in illuminated systems. Culturable and recoverable cells were defined as viable cells, and metabolically active cells and morphologically intact cells were defined as somnicells. Indirect activity measurements were also done by using [14C]glucose. In illuminated systems, a decrease of glucose uptake by E. coli cells was observed throughout the experiments. The assimilated fraction of [14C]glucose decreased faster than the respired fraction in illuminated systems. The percentage of respired [14C]glucose (14CO2 production) with respect to the total glucose uptake increased throughout the experiments, and the percentage of assimilated glucose decreased. Therefore, the visible light was also responsible for an additional inhibition of biosynthetic processes.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson I. C., Rhodes M. W., Kator H. I. Seasonal variation in survival of Escherichia coli exposed in situ in membrane diffusion chambers containing filtered and nonfiltered estuarine water. Appl Environ Microbiol. 1983 Jun;45(6):1877–1883. doi: 10.1128/aem.45.6.1877-1883.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bailey C. A., Neihof R. A., Tabor P. S. Inhibitory effect of solar radiation on amino Acid uptake in chesapeake bay bacteria. Appl Environ Microbiol. 1983 Jul;46(1):44–49. doi: 10.1128/aem.46.1.44-49.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barcina I., Arana I., Iriberri J., Egea L. Influence of light and natural microbiota of the Butrón river on E. coli survival. Antonie Van Leeuwenhoek. 1986;52(6):555–566. doi: 10.1007/BF00423416. [DOI] [PubMed] [Google Scholar]
- Davenport C. V., Sparrow E. B., Gordon R. C. Fecal indicator bacteria persistence under natural conditions in an ice-covered river. Appl Environ Microbiol. 1976 Oct;32(4):527–536. doi: 10.1128/aem.32.4.527-536.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dawe L. L., Penrose W. R. "Bactericidal" property of seawater: death or debilitation? Appl Environ Microbiol. 1978 May;35(5):829–833. doi: 10.1128/aem.35.5.829-833.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enzinger R. M., Cooper R. C. Role of bacteria and protozoa in the removal of Escherichia coli from estuarine waters. Appl Environ Microbiol. 1976 May;31(5):758–763. doi: 10.1128/aem.31.5.758-763.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fujioka R. S., Hashimoto H. H., Siwak E. B., Young R. H. Effect of sunlight on survival of indicator bacteria in seawater. Appl Environ Microbiol. 1981 Mar;41(3):690–696. doi: 10.1128/aem.41.3.690-696.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grimes D. J., Atwell R. W., Brayton P. R., Palmer L. M., Rollins D. M., Roszak D. B., Singleton F. L., Tamplin M. L., Colwell R. R. The fate of enteric pathogenic bacteria in estuarine and marine environments. Microbiol Sci. 1986 Nov;3(11):324–329. [PubMed] [Google Scholar]
- Hagström A., Larsson U., Hörstedt P., Normark S. Frequency of dividing cells, a new approach to the determination of bacterial growth rates in aquatic environments. Appl Environ Microbiol. 1979 May;37(5):805–812. doi: 10.1128/aem.37.5.805-812.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jagger J. Inhibition by sunlight of the growth of Escherichia coli B/r. Photochem Photobiol. 1975 Jul-Aug;22(1-2):67–70. doi: 10.1111/j.1751-1097.1975.tb06724.x. [DOI] [PubMed] [Google Scholar]
- Kapuscinski R. B., Mitchell R. Solar radiation induces sublethal injury in Escherichia coli in seawater. Appl Environ Microbiol. 1981 Mar;41(3):670–674. doi: 10.1128/aem.41.3.670-674.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCambridge J., McMeekin T. A. Effect of solar radiation and predacious microorganisms on survival of fecal and other bacteria. Appl Environ Microbiol. 1981 May;41(5):1083–1087. doi: 10.1128/aem.41.5.1083-1087.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McFeters G. A., Stuart D. G. Survival of coliform bacteria in natural waters: field and laboratory studies with membrane-filter chambers. Appl Microbiol. 1972 Nov;24(5):805–811. doi: 10.1128/am.24.5.805-811.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munro P. M., Gauthier M. J., Laumond F. M. Changes in Escherichia coli cells starved in seawater or grown in seawater-wastewater mixtures. Appl Environ Microbiol. 1987 Jul;53(7):1476–1481. doi: 10.1128/aem.53.7.1476-1481.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Newell S. Y. Modification of the gelatin-matrix method for enumeration of respiring bacterial cells for use with salt-marsh water samples. Appl Environ Microbiol. 1984 Apr;47(4):873–875. doi: 10.1128/aem.47.4.873-875.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhodes M. W., Anderson I. C., Kator H. I. In situ development of sublethal stress in Escherichia coli: effects on enumeration. Appl Environ Microbiol. 1983 Jun;45(6):1870–1876. doi: 10.1128/aem.45.6.1870-1876.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roszak D. B., Colwell R. R. Metabolic activity of bacterial cells enumerated by direct viable count. Appl Environ Microbiol. 1987 Dec;53(12):2889–2893. doi: 10.1128/aem.53.12.2889-2893.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SIEBURTH J. M., PRAT D. M. Anticoliform activity of sea water associated with the termination of Skeletonema costatum blooms. Trans N Y Acad Sci. 1962 Mar;24:498–501. doi: 10.1111/j.2164-0947.1962.tb01425.x. [DOI] [PubMed] [Google Scholar]