Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1989 Mar;55(3):717–721. doi: 10.1128/aem.55.3.717-721.1989

Kinetics of Nitrate Utilization by Mixed Populations of Denitrifying Bacteria

Robert E Murray 1,*, Laura L Parsons 1, M Scott Smith 1
PMCID: PMC184186  PMID: 16347879

Abstract

Kinetics of nitrate utilization by mixed bacterial populations from two agricultural soils and a pond sediment in Kentucky were measured by using progress curves of nitrous oxide production. Nitrous oxide production from anaerobic soil and sediment slurries containing added nitrate and acetylene exhibited first-order kinetics. Nitrate affinity (Km) for mixed populations of denitrifying bacteria in unfertilized agricultural soils and pond sediments ranged from 1.8 to 13.7 μM. The affinity of bacterial populations for nitrate did not vary with habitat, and the ability to use low concentrations of nitrate was retained by bacterial populations living in environments which received large inputs of nitrate.

Full text

PDF
717

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Betlach M. R., Tiedje J. M. Kinetic explanation for accumulation of nitrite, nitric oxide, and nitrous oxide during bacterial denitrification. Appl Environ Microbiol. 1981 Dec;42(6):1074–1084. doi: 10.1128/aem.42.6.1074-1084.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Christensen S., Tiedje J. M. Sub-Parts-Per-Billion Nitrate Method: Use of an N(2)O-Producing Denitrifier to Convert NO(3) or NO(3) to N(2)O. Appl Environ Microbiol. 1988 Jun;54(6):1409–1413. doi: 10.1128/aem.54.6.1409-1413.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hordijk C. A., Snieder M., van Engelen J. J., Cappenberg T. E. Estimation of bacterial nitrate reduction rates at in situ concentrations in freshwater sediments. Appl Environ Microbiol. 1987 Feb;53(2):217–223. doi: 10.1128/aem.53.2.217-223.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Oremland R. S., Umberger C., Culbertson C. W., Smith R. L. Denitrification in san francisco bay intertidal sediments. Appl Environ Microbiol. 1984 May;47(5):1106–1112. doi: 10.1128/aem.47.5.1106-1112.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Oren A., Blackburn T. H. Estimation of sediment denitrification rates at in situ nitrate concentrations. Appl Environ Microbiol. 1979 Jan;37(1):174–176. doi: 10.1128/aem.37.1.174-176.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Thayer J. R., Huffaker R. C. Kinetic evaluation, using 13N, reveals two assimilatory nitrate transport systems in Klebsiella pneumoniae. J Bacteriol. 1982 Jan;149(1):198–202. doi: 10.1128/jb.149.1.198-202.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Tiedje J. M., Sexstone A. J., Myrold D. D., Robinson J. A. Denitrification: ecological niches, competition and survival. Antonie Van Leeuwenhoek. 1982;48(6):569–583. doi: 10.1007/BF00399542. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES