Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 May;56(5):1386–1391. doi: 10.1128/aem.56.5.1386-1391.1990

Trehalose levels and survival ratio of freeze-tolerant versus freeze-sensitive yeasts.

A Hino 1, K Mihara 1, K Nakashima 1, H Takano 1
PMCID: PMC184415  PMID: 2339891

Abstract

Five freeze-tolerant yeast strains suitable for frozen dough were compared with ordinary commercial bakers' yeast. Kluyveromyces thermotolerans FRI 501 cells showed high survival ability after freezing when their resting cells were fermented for 0 to 180 min in modified liquid medium, and they grew to log and stationary phases. Among the freeze-tolerant strains of Saccharomyces cerevisiae, FRI 413 and FRI 869 showed higher surviving and trehalose-accumulating abilities than other S. cerevisiae strains, but were affected by a prolonged prefermentation period and by growth phases. The freeze tolerance of the yeasts was, to some extent, associated with the basal amount of intracellular trehalose after rapid degradation at the onset of the prefermentation period. In the freeze-sensitive yeasts, the degree of hydrolysis of trehalose may thus be affected by the kind of saccharide, unlike in freeze-tolerant yeasts.

Full text

PDF
1387

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bhandal I. S., Hauptmann R. M., Widholm J. M. Trehalose as cryoprotectant for the freeze preservation of carrot and tobacco cells. Plant Physiol. 1985 Jun;78(2):430–432. doi: 10.1104/pp.78.2.430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Carpenter J. F., Hand S. C., Crowe L. M., Crowe J. H. Cryoprotection of phosphofructokinase with organic solutes: characterization of enhanced protection in the presence of divalent cations. Arch Biochem Biophys. 1986 Nov 1;250(2):505–512. doi: 10.1016/0003-9861(86)90755-1. [DOI] [PubMed] [Google Scholar]
  3. Crowe J. H., Crowe L. M., Carpenter J. F., Aurell Wistrom C. Stabilization of dry phospholipid bilayers and proteins by sugars. Biochem J. 1987 Feb 15;242(1):1–10. doi: 10.1042/bj2420001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Crowe J. H., Crowe L. M., Carpenter J. F., Rudolph A. S., Wistrom C. A., Spargo B. J., Anchordoguy T. J. Interactions of sugars with membranes. Biochim Biophys Acta. 1988 Jun 9;947(2):367–384. doi: 10.1016/0304-4157(88)90015-9. [DOI] [PubMed] [Google Scholar]
  5. Crowe J. H., Crowe L. M., Chapman D. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science. 1984 Feb 17;223(4637):701–703. doi: 10.1126/science.223.4637.701. [DOI] [PubMed] [Google Scholar]
  6. Crowe J. H., Whittam M. A., Chapman D., Crowe L. M. Interactions of phospholipid monolayers with carbohydrates. Biochim Biophys Acta. 1984 Jan 11;769(1):151–159. doi: 10.1016/0005-2736(84)90018-x. [DOI] [PubMed] [Google Scholar]
  7. Crowe L. M., Mouradian R., Crowe J. H., Jackson S. A., Womersley C. Effects of carbohydrates on membrane stability at low water activities. Biochim Biophys Acta. 1984 Jan 11;769(1):141–150. doi: 10.1016/0005-2736(84)90017-8. [DOI] [PubMed] [Google Scholar]
  8. Dellamora-Ortiz G. M., Ortiz C. H., Maia J. C., Panek A. D. Partial purification and characterization of the interconvertible forms of trehalase from Saccharomyces cerevisiae. Arch Biochem Biophys. 1986 Nov 15;251(1):205–214. doi: 10.1016/0003-9861(86)90067-6. [DOI] [PubMed] [Google Scholar]
  9. Elbein A. D. The metabolism of alpha,alpha-trehalose. Adv Carbohydr Chem Biochem. 1974;30:227–256. doi: 10.1016/s0065-2318(08)60266-8. [DOI] [PubMed] [Google Scholar]
  10. Gélinas P., Fiset G., Leduy A., Goulet J. Effect of growth conditions and trehalose content on cryotolerance of bakers' yeast in frozen doughs. Appl Environ Microbiol. 1989 Oct;55(10):2453–2459. doi: 10.1128/aem.55.10.2453-2459.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Iida H., Yahara I. A heat shock-resistant mutant of Saccharomyces cerevisiae shows constitutive synthesis of two heat shock proteins and altered growth. J Cell Biol. 1984 Oct;99(4 Pt 1):1441–1450. doi: 10.1083/jcb.99.4.1441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lillie S. H., Pringle J. R. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980 Sep;143(3):1384–1394. doi: 10.1128/jb.143.3.1384-1394.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mackenzie K. F., Singh K. K., Brown A. D. Water stress plating hypersensitivity of yeasts: protective role of trehalose in Saccharomyces cerevisiae. J Gen Microbiol. 1988 Jun;134(6):1661–1666. doi: 10.1099/00221287-134-6-1661. [DOI] [PubMed] [Google Scholar]
  14. Oda Y., Uno K., Ohta S. Selection of yeasts for breadmaking by the frozen-dough method. Appl Environ Microbiol. 1986 Oct;52(4):941–943. doi: 10.1128/aem.52.4.941-943.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ortiz C. H., Maia J. C., Tenan M. N., Braz-Padrão G. R., Mattoon J. R., Panek A. D. Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylation-dephosphorylation cascade system. J Bacteriol. 1983 Feb;153(2):644–651. doi: 10.1128/jb.153.2.644-651.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Panek A. D., Mattoon J. R. Regulation of energy metabolism in Saccharomyces cerevisiae. Relationships between catabolite repression, trehalose synthesis, and mitochondrial development. Arch Biochem Biophys. 1977 Sep;183(1):306–316. doi: 10.1016/0003-9861(77)90444-1. [DOI] [PubMed] [Google Scholar]
  17. Panek A. D., Sampaio A. L., Braz G. C., Baker S. J., Mattoon J. R. Genetic and metabolic control of trehalose and glycogen synthesis. New relationships between energy reserves, catabolite repression and maltose utilization. Cell Mol Biol Incl Cyto Enzymol. 1979;25(5):345–354. [PubMed] [Google Scholar]
  18. Schenberg-Frascino A., Moustacchi E. Lethal and mutagenic effects of elevated temperature on haploid yeast. I. Variations in sensitivity during the cell cycle. Mol Gen Genet. 1972;115(3):243–257. doi: 10.1007/BF00268888. [DOI] [PubMed] [Google Scholar]
  19. Thevelein J. M. Regulation of trehalose mobilization in fungi. Microbiol Rev. 1984 Mar;48(1):42–59. doi: 10.1128/mr.48.1.42-59.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Uno I., Matsumoto K., Adachi K., Ishikawa T. Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem. 1983 Sep 25;258(18):10867–10872. [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES