Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1983 Apr;23(4):526–530. doi: 10.1128/aac.23.4.526

Membrane potential in anaerobically growing Staphylococcus aureus and its relationship to gentamicin uptake.

S M Mates, L Patel, H R Kaback, M H Miller
PMCID: PMC184693  PMID: 6859831

Abstract

The electrical potential (delta psi) across the cytoplasmic membranes of Staphylococcus aureus cells growing under aerobic and anaerobic conditions was determined by measuring the equilibrium distribution of [3H]tetraphenyl phosphonium. In conjunction, gentamicin uptake and killing were studied in the same cells under identical conditions. Under aerobic conditions, delta psi was -169 mV, gentamicin uptake was readily demonstrable, and the number of viable cells decreased by almost four orders of magnitude in the presence of antibiotic. In contrast, delta psi was -142 mV anaerobically, gentamicin uptake was essentially nonexistent, and the aminoglycoside had no effect on viability. Remarkably, when the ionophore nigericin was added under anaerobic conditions, delta psi increased to the level observed aerobically, gentamicin uptake tripled to about 18% of the aerobic level, and viability decreased by one order of magnitude. The results are consistent with other observations (Mates et al., Proc. Natl. Acad. Sci. U.S.A. 79:6693-6697, 1982), indicating that the relationship between delta psi and gentamicin uptake is gated, and suggest that diminution of delta psi may be an important factor in aminoglycoside resistance under anaerobic conditions.

Full text

PDF
527

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bryan L. E., Kowand S. K., Van Den Elzen H. M. Mechanism of aminoglycoside antibiotic resistance in anaerobic bacteria: Clostridium perfringens and Bacteroides fragilis. Antimicrob Agents Chemother. 1979 Jan;15(1):7–13. doi: 10.1128/aac.15.1.7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bryan L. E., Kwan S. Mechanisms of aminoglycoside resistance of anaerobic bacteria and facultative bacteria grown anaerobically. J Antimicrob Chemother. 1981 Dec;8 (Suppl 500):1–8. doi: 10.1093/jac/8.suppl_d.1. [DOI] [PubMed] [Google Scholar]
  3. Bryan L. E., Nicas T., Holloway B. W., Crowther C. Aminoglycoside-resistant mutation of Pseudomonas aeruginosa defective in cytochrome c552 and nitrate reductase. Antimicrob Agents Chemother. 1980 Jan;17(1):71–79. doi: 10.1128/aac.17.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Campbell B. D., Kadner R. J. Relation of aerobiosis and ionic strength to the uptake of dihydrostreptomycin in Escherichia coli. Biochim Biophys Acta. 1980 Nov 5;593(1):1–10. doi: 10.1016/0005-2728(80)90002-x. [DOI] [PubMed] [Google Scholar]
  5. HANCOCK R. Uptake of 14C-streptomycin by some microorganisms and its relation to their streptomycin sensitivity. J Gen Microbiol. 1962 Jul;28:493–501. doi: 10.1099/00221287-28-3-493. [DOI] [PubMed] [Google Scholar]
  6. Kaback H. R. Transport across isolated bacterial cytoplasmic membranes. Biochim Biophys Acta. 1972 Aug 4;265(3):367–416. doi: 10.1016/0304-4157(72)90014-7. [DOI] [PubMed] [Google Scholar]
  7. Kashket E. R. Proton motive force in growing Streptococcus lactis and Staphylococcus aureus cells under aerobic and anaerobic conditions. J Bacteriol. 1981 Apr;146(1):369–376. doi: 10.1128/jb.146.1.369-376.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Mates S. M., Eisenberg E. S., Mandel L. J., Patel L., Kaback H. R., Miller M. H. Membrane potential and gentamicin uptake in Staphylococcus aureus. Proc Natl Acad Sci U S A. 1982 Nov;79(21):6693–6697. doi: 10.1073/pnas.79.21.6693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ramos S., Schuldiner S., Kaback H. R. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Proc Natl Acad Sci U S A. 1976 Jun;73(6):1892–1896. doi: 10.1073/pnas.73.6.1892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES