Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 Aug;56(8):2417–2420. doi: 10.1128/aem.56.8.2417-2420.1990

Regulation of Sugar Transport Systems in Fusarium oxysporum var. lini

Rogélio L Brandão 1,, Maria C Loureiro-Dias 1,*
PMCID: PMC184743  PMID: 16348256

Abstract

Fusarium oxysporum var. lini (ATCC 10960) formed a facilitated diffusion system for glucose (Ks, about 10 mM) when grown under repressed conditions. Under conditions of derepression, the same system was present together with a high-affinity (Ks, about 40 μM) active system. The maximum velocity of the latter was about 5% of that of the facilitated diffusion system. The high-affinity system was under the control of glucose repression and glucose inactivation. When lactose was the only carbon source in the medium, a facilitated diffusion system for lactose was found (Ks, about 30 mM).

Full text

PDF
2418

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bisson L. F. High-affinity glucose transport in Saccharomyces cerevisiae is under general glucose repression control. J Bacteriol. 1988 Oct;170(10):4838–4845. doi: 10.1128/jb.170.10.4838-4845.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brandão R. L., Nicoli J. R., Figueiredo A. F. Purification and characterization of a beta-galactosidase from Fusarium oxysporum var. lini. J Dairy Sci. 1987 Jul;70(7):1331–1337. doi: 10.3168/jds.s0022-0302(87)80152-2. [DOI] [PubMed] [Google Scholar]
  3. Brown C. E., Romano A. H. Evidence against necessary phosphorylation during hexose transport in Aspergillus nidulans. J Bacteriol. 1969 Dec;100(3):1198–1203. doi: 10.1128/jb.100.3.1198-1203.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KOTYK A., KLEINZELLER A. Movement of sodium and cell volume changes in a sodium-rich yeast. J Gen Microbiol. 1959 Apr;20(2):197–212. doi: 10.1099/00221287-20-2-197. [DOI] [PubMed] [Google Scholar]
  5. Lang J. M., Cirillo V. P. Glucose transport in a kinaseless Saccharomyces cerevisiae mutant. J Bacteriol. 1987 Jul;169(7):2932–2937. doi: 10.1128/jb.169.7.2932-2937.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Loureiro-Dias M. C. Movements of protons coupled to glucose transport in yeasts. A comparative study among 248 yeast strains. Antonie Van Leeuwenhoek. 1988;54(4):331–343. doi: 10.1007/BF00393524. [DOI] [PubMed] [Google Scholar]
  7. Mark C. G., Romano A. H. Properties of the hexose transport systems of Aspergillus nidulans. Biochim Biophys Acta. 1971 Oct 12;249(1):216–226. doi: 10.1016/0005-2736(71)90098-8. [DOI] [PubMed] [Google Scholar]
  8. Peinado J. M., Cameira-dos-Santos P. J., Loureiro-Días M. C. Regulation of glucose transport in Candida utilis. J Gen Microbiol. 1989 Jan;135(1):195–201. doi: 10.1099/00221287-135-1-195. [DOI] [PubMed] [Google Scholar]
  9. Scarborough G. A. Sugar transport in Neurospora crassa. II. A second glucose transport system. J Biol Chem. 1970 Aug 10;245(15):3985–3987. [PubMed] [Google Scholar]
  10. Scarborough G. A. Sugar transport in Neurospora crassa. J Biol Chem. 1970 Apr 10;245(7):1694–1698. [PubMed] [Google Scholar]
  11. Slayman C. L., Slayman C. W. Depolarization of the plasma membrane of Neurospora during active transport of glucose: evidence for a proton-dependent cotransport system. Proc Natl Acad Sci U S A. 1974 May;71(5):1935–1939. doi: 10.1073/pnas.71.5.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Van den Broek P. J., Van Steveninck J. Kinetic analysis of H+/methyl beta-D-thiogalactoside symport in Saccharomyces fragilis. Biochim Biophys Acta. 1982 Dec 8;693(1):213–220. doi: 10.1016/0005-2736(82)90489-8. [DOI] [PubMed] [Google Scholar]
  13. Verma R. S., Spencer-Martins I., Van Uden N. Role of de novo protein synthesis in the interconversion of glucose transport systems in the yeast Pichia ohmeri. Biochim Biophys Acta. 1987 Jun 12;900(1):139–144. doi: 10.1016/0005-2736(87)90285-9. [DOI] [PubMed] [Google Scholar]
  14. Vinson L. J., Cerecedo L. R., Mull R. P., Nord F. F. THE NUTRITIVE VALUE OF FUSARIA. Science. 1945 Apr 13;101(2624):388–389. doi: 10.1126/science.101.2624.388. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES