Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 Oct;56(10):3139–3145. doi: 10.1128/aem.56.10.3139-3145.1990

Mathematical Model of Plasmid Transfer between Strains of Streptomycetes in Soil Microcosms

L J Clewlow 1, N Cresswell 1, E M H Wellington 1,*
PMCID: PMC184912  PMID: 16348321

Abstract

A mathematical model was developed and used to simulate the long-term dynamics of growth and plasmid transfer in nutrient-limited soil microcosms of Streptomyces lividans TK24 carrying chromosomal resistance to streptomycin, S. lividans 1326; and S. violaceolatus ISP5438. Donor, recipient, and transconjugant survival was modelled by an extension to the Verhulst logistic equation which takes account of nutrient limitation, and plasmid transfer was modelled by a mass action model. Rate parameters were derived from experimental data on the early stages of the development of sterile systems. The model predicted donor, recipient, and transconjugant populations in 2.4-h (0.1-day) steps and was tested against the long-term behavior of the experimental sterile systems and independent experimental data on nonsterile systems. Bacteria were periodically enumerated onto selective media over a 20-day period. The effects of long-term nutrient-moisture depletion were correctly predicted.

Full text

PDF
3140

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Freter R., Freter R. R., Brickner H. Experimental and mathematical models of Escherichia coli plasmid transfer in vitro and in vivo. Infect Immun. 1983 Jan;39(1):60–84. doi: 10.1128/iai.39.1.60-84.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Herron P. R., Wellington E. M. New method for extraction of streptomycete spores from soil and application to the study of lysogeny in sterile amended and nonsterile soil. Appl Environ Microbiol. 1990 May;56(5):1406–1412. doi: 10.1128/aem.56.5.1406-1412.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Knudsen G. R., Walter M. V., Porteous L. A., Prince V. J., Armstrong J. L., Seidler R. J. Predictive model of conjugative plasmid transfer in the rhizosphere and phyllosphere. Appl Environ Microbiol. 1988 Feb;54(2):343–347. doi: 10.1128/aem.54.2.343-347.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Levin B. R., Stewart F. M., Rice V. A. The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid. 1979 Apr;2(2):247–260. doi: 10.1016/0147-619x(79)90043-x. [DOI] [PubMed] [Google Scholar]
  5. Wellington E. M., Cresswell N., Saunders V. A. Growth and survival of streptomycete inoculants and extent of plasmid transfer in sterile and nonsterile soil. Appl Environ Microbiol. 1990 May;56(5):1413–1419. doi: 10.1128/aem.56.5.1413-1419.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Williams S. T., Goodfellow M., Alderson G., Wellington E. M., Sneath P. H., Sackin M. J. Numerical classification of Streptomyces and related genera. J Gen Microbiol. 1983 Jun;129(6):1743–1813. doi: 10.1099/00221287-129-6-1743. [DOI] [PubMed] [Google Scholar]
  7. Williams S. T., Goodfellow M., Wellington E. M., Vickers J. C., Alderson G., Sneath P. H., Sackin M. J., Mortimer A. M. A probability matrix for identification of some Streptomycetes. J Gen Microbiol. 1983 Jun;129(6):1815–1830. doi: 10.1099/00221287-129-6-1815. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES