Abstract
We have previously isolated mutants of Escherichia coli which show increased oxidation of heterocyclic furan and thiophene substrates. We have now found that strains carrying the thdA mutation express a novel enzyme activity which oxidizes a variety of substrates containing a sulfone (SO2) moiety. Both heterocyclic sulfones (e.g., tetramethylene sulfone) and simple aliphatic sulfones (e.g., ethyl sulfone) were oxidized. The thdA mutants were more resistant than wild-type strains to aromatic sulfone antibiotics such as dapsone. In contrast they showed increased susceptibility to thiolutin, a cyclic antibiotic containing sulfur at the sulfide level of oxidation. Several new thdA mutant alleles were isolated by selecting for increased oxidation of various aliphatic sulfur compounds. These new thdA mutants showed similar sulfone oxidase activity and the same map location (at 10.7 min) as the original thdA1 mutation. The constitutive fadR mutation was required for the phenotypic expression of thdA-mediated oxidation of sulfur compounds. However, the thdA-directed expression of sulfone oxidase activity was not fadR dependent. The thdC and thdD mutations probably protect against the toxicity of thiophene derivatives rather than conferring improved metabolic capability.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Abdulrashid N., Clark D. P. Isolation and genetic analysis of mutations allowing the degradation of furans and thiophenes by Escherichia coli. J Bacteriol. 1987 Mar;169(3):1267–1271. doi: 10.1128/jb.169.3.1267-1271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alam K. Y., Worland M. J., Clark D. P. Analysis and molecular cloning of genes involved in thiophene and furan oxidation by E. coli. Appl Biochem Biotechnol. 1990 Spring-Summer;24-25:843–855. doi: 10.1007/BF02920299. [DOI] [PubMed] [Google Scholar]
- Bachmann B. J. Linkage map of Escherichia coli K-12, edition 7. Microbiol Rev. 1983 Jun;47(2):180–230. doi: 10.1128/mr.47.2.180-230.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Clark D. P., Alam K. Y., Abdulrashid N., Klubek B. Successive mutation of E. coli for improved thiophene degradation. Scientific note. Appl Biochem Biotechnol. 1988 Aug;18:393–401. doi: 10.1007/BF02930842. [DOI] [PubMed] [Google Scholar]
- Clark D. P., Rod M. L. Regulatory mutations that allow the growth of Escherichia coli on butanol as carbon source. J Mol Evol. 1987;25(2):151–158. doi: 10.1007/BF02101757. [DOI] [PubMed] [Google Scholar]
- Cripps R. E. The microbial metabolism of thiophen-2-carboxylate. Biochem J. 1973 Jun;134(2):353–366. doi: 10.1042/bj1340353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cunningham P. R., Clark D. P. The use of suicide substrates to select mutants of Escherichia coli lacking enzymes of alcohol fermentation. Mol Gen Genet. 1986 Dec;205(3):487–493. doi: 10.1007/BF00338087. [DOI] [PubMed] [Google Scholar]
- DODGSON K. S. Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochem J. 1961 Feb;78:312–319. doi: 10.1042/bj0780312. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnson M. E., Rajagopalan K. V. Involvement of chlA, E, M, and N loci in Escherichia coli molybdopterin biosynthesis. J Bacteriol. 1987 Jan;169(1):117–125. doi: 10.1128/jb.169.1.117-125.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller J. B., Amy N. K. Molybdenum cofactor in chlorate-resistant and nitrate reductase-deficient insertion mutants of Escherichia coli. J Bacteriol. 1983 Aug;155(2):793–801. doi: 10.1128/jb.155.2.793-801.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Monticello D. J., Finnerty W. R. Microbial desulfurization of fossil fuels. Annu Rev Microbiol. 1985;39:371–389. doi: 10.1146/annurev.mi.39.100185.002103. [DOI] [PubMed] [Google Scholar]
- Nunn W. D. A molecular view of fatty acid catabolism in Escherichia coli. Microbiol Rev. 1986 Jun;50(2):179–192. doi: 10.1128/mr.50.2.179-192.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Overath P., Pauli G., Schairer H. U. Fatty acid degradation in Escherichia coli. An inducible acyl-CoA synthetase, the mapping of old-mutations, and the isolation of regulatory mutants. Eur J Biochem. 1969 Feb;7(4):559–574. [PubMed] [Google Scholar]
- Pauli G., Overath P. ato Operon: a highly inducible system for acetoacetate and butyrate degradation in Escherichia coli. Eur J Biochem. 1972 Sep 25;29(3):553–562. doi: 10.1111/j.1432-1033.1972.tb02021.x. [DOI] [PubMed] [Google Scholar]
- Peixoto M. P., Beverley S. M. In vitro activity of sulfonamides and sulfones against Leishmania major promastigotes. Antimicrob Agents Chemother. 1987 Oct;31(10):1575–1578. doi: 10.1128/aac.31.10.1575. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sivasubramanian N., Jayaraman R. Mapping of two transcription mutations (tlnI and tlnII) conferring thiolutin resistance, adjacent to dnaZ and rho in Escherichia coli. Mol Gen Genet. 1980;180(3):609–615. doi: 10.1007/BF00268068. [DOI] [PubMed] [Google Scholar]
- Zhou D., White R. H. Biosynthesis of caldariellaquinone in Sulfolobus spp. J Bacteriol. 1989 Dec;171(12):6610–6616. doi: 10.1128/jb.171.12.6610-6616.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]