Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 Nov;56(11):3247–3254. doi: 10.1128/aem.56.11.3247-3254.1990

Reductive dehalogenation of carbon tetrachloride by Escherichia coli K-12.

C S Criddle 1, J T DeWitt 1, P L McCarty 1
PMCID: PMC184937  PMID: 2268147

Abstract

The formation of radicals from carbon tetrachloride (CT) is often invoked to explain the product distribution resulting from its transformation. Radicals formed by reduction of CT presumably react with constituents of the surrounding milieu to give the observed product distribution. The patterns of transformation observed in this work were consistent with such a hypothesis. In cultures of Escherichia coli K-12, the pathways and rates of CT transformation were dependent on the electron acceptor condition of the media. Use of oxygen and nitrate as electron acceptors generally prevented CT metabolism. At low oxygen levels (approximately 1%), however, transformation of [14C]CT to 14CO2 and attachment to cell material did occur, in accord with reports of CT fate in mammalian cell cultures. Under fumarate-respiring conditions, [14C]CT was recovered as 14CO2, chloroform, and a nonvolatile fraction. In contrast, fermenting conditions resulted in more chloroform, more cell-bound 14C, and almost no 14CO2. Rates of transformation of CT were faster under fermenting conditions than under fumarate-respiring conditions. Transformation rates also decreased over time, suggesting the gradual exhaustion of transformation activity. This loss was modeled with a simple exponential decay term.

Full text

PDF
3249

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apontoweil P., Berends W. Isolation and initial characterization of glutathione-deficient mutants of Escherichia coli K 12. Biochim Biophys Acta. 1975 Jul 14;399(1):10–22. doi: 10.1016/0304-4165(75)90206-8. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Criddle C. S., DeWitt J. T., Grbić-Galić D., McCarty P. L. Transformation of carbon tetrachloride by Pseudomonas sp. strain KC under denitrification conditions. Appl Environ Microbiol. 1990 Nov;56(11):3240–3246. doi: 10.1128/aem.56.11.3240-3246.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DiRenzo A. B., Gandolfi A. J., Sipes I. G., Brendel K., Byard J. L. Effect of O2 tension on the bioactivation and metabolism of aliphatic halides by primary rat-hepatocyte cultures. Xenobiotica. 1984 Jul;14(7):521–525. doi: 10.3109/00498258409151441. [DOI] [PubMed] [Google Scholar]
  5. Egli C., Tschan T., Scholtz R., Cook A. M., Leisinger T. Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl Environ Microbiol. 1988 Nov;54(11):2819–2824. doi: 10.1128/aem.54.11.2819-2824.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fahey R. C., Brown W. C., Adams W. B., Worsham M. B. Occurrence of glutathione in bacteria. J Bacteriol. 1978 Mar;133(3):1126–1129. doi: 10.1128/jb.133.3.1126-1129.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Graydon J. W., Grob K., Zuercher F., Giger W. Determination of highly volatile organic contaminants in water by the closed-loop gaseous stripping technique followed by thermal desorption of the activated carbon filters. J Chromatogr. 1984 Mar 2;285(2):307–318. doi: 10.1016/s0021-9673(01)87772-4. [DOI] [PubMed] [Google Scholar]
  8. Gälli R., McCarty P. L. Biotransformation of 1,1,1-trichloroethane, trichloromethane, and tetrachloromethane by a Clostridium sp. Appl Environ Microbiol. 1989 Apr;55(4):837–844. doi: 10.1128/aem.55.4.837-844.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gälli R., McCarty P. L. Kinetics of biotransformation of 1,1,1-trichloroethane by Clostridium sp. strain TCAIIB. Appl Environ Microbiol. 1989 Apr;55(4):845–851. doi: 10.1128/aem.55.4.845-851.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Haddock B. A., Jones C. W. Bacterial respiration. Bacteriol Rev. 1977 Mar;41(1):47–99. doi: 10.1128/br.41.1.47-99.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Ingledew W. J., Poole R. K. The respiratory chains of Escherichia coli. Microbiol Rev. 1984 Sep;48(3):222–271. doi: 10.1128/mr.48.3.222-271.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Thauer R. K., Jungermann K., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977 Mar;41(1):100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Trudell J. R., Bösterling B., Trevor A. J. Reductive metabolism of carbon tetrachloride by human cytochromes P-450 reconstituted in phospholipid vesicles: mass spectral identification of trichloromethyl radical bound to dioleoyl phosphatidylcholine. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2678–2682. doi: 10.1073/pnas.79.8.2678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. de Groot H., Noll T. The crucial role of low steady state oxygen partial pressures in haloalkane free-radical-mediated lipid peroxidation. Possible implications in haloalkane liver injury. Biochem Pharmacol. 1986 Jan 1;35(1):15–19. doi: 10.1016/0006-2952(86)90546-0. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES