Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1990 Nov;56(11):3515–3518. doi: 10.1128/aem.56.11.3515-3518.1990

Effect of Dicarboxylic Acids and Aspergillus oryzae Fermentation Extract on Lactate Uptake by the Ruminal Bacterium Selenomonas ruminantium

David J Nisbet 1, Scott A Martin 1,*
PMCID: PMC185007  PMID: 16348354

Abstract

The objective of this study was to determine the effects of l-aspartate, fumarate, l-malate, and an Aspergillus oryzae fermentation extract (Amaferm) on growth on lactate as well as lactate uptake by Selenomonas ruminantium HD4. Growth of S. ruminantium in medium that contained 2 g of dl-lactate per liter was stimulated approximately twofold by 10 mM l-aspartate, fumarate, or l-malate after 24 h. Both l-aspartate and fumarate increased lactate uptake over 4-fold, while l-malate stimulated uptake over 10-fold. Amaferm enhanced lactate uptake at all concentrations tested (0.5 to 50 g/liter), and the 10-g/liter level increased uptake over 12-fold. A filter-sterilized Amaferm filtrate increased lactate uptake over sevenfold, and growth on lactate was stimulated over twofold by either 2 or 5% (vol/vol) Amaferm filtrate. The Amaferm filtrate also increased the production of acetate, propionate, total volatile fatty acids, and Ylactate from lactate-grown cells. Since the increase in propionate production was greater relative to acetate, a decrease in the acetate:propionate ratio was observed. The concentration of l-malate in the Amaferm filtrate was 1.45 mM, and it appeared that the l-malate content of Amaferm played a role in the stimulation of growth on lactate as well as lactate uptake by S. ruminantium treated with Amaferm.

Full text

PDF
3517

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRYANT M. P. The characteristics of strains of Selenomonas isolated from bovine rumen contents. J Bacteriol. 1956 Aug;72(2):162–167. doi: 10.1128/jb.72.2.162-167.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bercovitz A., Peleg Y., Battat E., Rokem J. S., Goldberg I. Localization of pyruvate carboxylase in organic acid-producing Aspergillus strains. Appl Environ Microbiol. 1990 Jun;56(6):1594–1597. doi: 10.1128/aem.56.6.1594-1597.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Caldwell D. R., Bryant M. P. Medium without rumen fluid for nonselective enumeration and isolation of rumen bacteria. Appl Microbiol. 1966 Sep;14(5):794–801. doi: 10.1128/am.14.5.794-801.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989 May;66(5):365–378. [PubMed] [Google Scholar]
  5. HUNGATE R. E., DOUGHERTY R. W., BRYANT M. P., CELLO R. M. Microbiological and physiological changes associated with acute indigestion in sheep. Cornell Vet. 1952 Oct;42(4):423–449. [PubMed] [Google Scholar]
  6. Henderson C. The influence of extracellular hydrogen on the metabolism of Bacteroides ruminicola, Anaerovibrio lipolytica and Selenomonas ruminantium. J Gen Microbiol. 1980 Aug;119(2):485–491. doi: 10.1099/00221287-119-2-485. [DOI] [PubMed] [Google Scholar]
  7. Kanegasaki S., Takahashi H. Function of growth factors for rumen microorganisms. I. Nutritional characteristics of Selenomonas ruminantium. J Bacteriol. 1967 Jan;93(1):456–463. doi: 10.1128/jb.93.1.456-463.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  9. Linehan B., Scheifinger C. C., Wolin M. J. Nutritional Requirements of Selenomonas ruminantium for Growth on Lactate, Glycerol, or Glucose. Appl Environ Microbiol. 1978 Feb;35(2):317–322. doi: 10.1128/aem.35.2.317-322.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Martin S. A., Nisbet D. J. Effects of Aspergillus oryzae fermentation extract on fermentation of amino acids, bermudagrass and starch by mixed ruminal microorganisms in vitro. J Anim Sci. 1990 Jul;68(7):2142–2149. doi: 10.2527/1990.6872142x. [DOI] [PubMed] [Google Scholar]
  11. Martin S. A., Russell J. B. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system. Appl Environ Microbiol. 1986 Dec;52(6):1348–1352. doi: 10.1128/aem.52.6.1348-1352.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Matin A., Veldkamp H. Physiological basis of the selective advantage of a Spirillum sp. in a carbon-limited environment. J Gen Microbiol. 1978 Apr;105(2):187–197. doi: 10.1099/00221287-105-2-187. [DOI] [PubMed] [Google Scholar]
  13. Russell J. B. Fermentation of Peptides by Bacteroides ruminicola B(1)4. Appl Environ Microbiol. 1983 May;45(5):1566–1574. doi: 10.1128/aem.45.5.1566-1574.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Russell J. B. Heat production by ruminal bacteria in continuous culture and its relationship to maintenance energy. J Bacteriol. 1986 Nov;168(2):694–701. doi: 10.1128/jb.168.2.694-701.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Russell J. B., Hespell R. B. Microbial rumen fermentation. J Dairy Sci. 1981 Jun;64(6):1153–1169. doi: 10.3168/jds.S0022-0302(81)82694-X. [DOI] [PubMed] [Google Scholar]
  16. Slyter L. L. Influence of acidosis on rumen function. J Anim Sci. 1976 Oct;43(4):910–929. doi: 10.2527/jas1976.434910x. [DOI] [PubMed] [Google Scholar]
  17. Wiedmeier R. D., Arambel M. J., Walters J. L. Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility. J Dairy Sci. 1987 Oct;70(10):2063–2068. doi: 10.3168/jds.S0022-0302(87)80254-0. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES