Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Jul;96(1):126–131. doi: 10.1172/JCI118012

Metabolic abnormalities in skeletal muscle of patients receiving zidovudine therapy observed by 31P in vivo magnetic resonance spectroscopy.

T M Sinnwell 1, K Sivakumar 1, S Soueidan 1, C Jay 1, J A Frank 1, A C McLaughlin 1, M C Dalakas 1
PMCID: PMC185180  PMID: 7615782

Abstract

Patients on long-term zidovudine (AZT) therapy experience muscle fatigue and weakness attributed to AZT-induced mitochondrial toxicity in skeletal muscle. To determine if the clinico-pathological abnormalities in these patients correspond to abnormal muscle energy metabolism, we used 31P in vivo magnetic resonance spectroscopy to follow phosphorylated metabolites during exercise. We studied 19 normal volunteers, 6 HIV-positive patients never treated with AZT, and 9 HIV-positive patients who had been treated with AZT for a mean period of 33 mo (range 12-48 mo) and had muscle biopsy-proven AZT-myopathy with abnormal mitochondria. Changes in phosphocreatine, ATP, and intracellular pH in the gastrocnemius muscle were followed during a graded steady state exercise protocol, and the recovery of phosphocreatine was followed on cessation of exercise. We found that graded steady state exercise produced a greater depletion of muscle phosphocreatine levels in the AZT-treated patients, compared to either HIV-positive patients who were not treated with AZT or normal controls. No differences in the effects of steady state exercise on muscle phosphocreatine levels were observed between the control group and the HIV-positive patients who had not been treated with AZT. The results suggest that the effect of AZT on muscle energy metabolism is significant, and similar to the effect observed in patients with known mitochondrial myopathies. Using a well-known model for control of mitochondrial metabolism, the observed differences in steady state phosphocreatine levels during exercise suggest that AZT treatment decreases the maximal work output and the maximal rate of muscle ATP synthesis.

Full text

PDF
127

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argov Z., Bank W. J., Maris J., Peterson P., Chance B. Bioenergetic heterogeneity of human mitochondrial myopathies: phosphorus magnetic resonance spectroscopy study. Neurology. 1987 Feb;37(2):257–262. doi: 10.1212/wnl.37.2.257. [DOI] [PubMed] [Google Scholar]
  2. Arnaudo E., Dalakas M., Shanske S., Moraes C. T., DiMauro S., Schon E. A. Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine-induced myopathy. Lancet. 1991 Mar 2;337(8740):508–510. doi: 10.1016/0140-6736(91)91294-5. [DOI] [PubMed] [Google Scholar]
  3. Arnold D. L., Taylor D. J., Radda G. K. Investigation of human mitochondrial myopathies by phosphorus magnetic resonance spectroscopy. Ann Neurol. 1985 Aug;18(2):189–196. doi: 10.1002/ana.410180205. [DOI] [PubMed] [Google Scholar]
  4. Barbiroli B., Funicello R., Ferlini A., Montagna P., Zaniol P. Muscle energy metabolism in female DMD/BMD carriers: a 31P-MR spectroscopy study. Muscle Nerve. 1992 Mar;15(3):344–348. doi: 10.1002/mus.880150313. [DOI] [PubMed] [Google Scholar]
  5. Bet L., Bresolin N., Moggio M., Meola G., Prelle A., Schapira A. H., Binzoni T., Chomyn A., Fortunato F., Cerretelli P. A case of mitochondrial myopathy, lactic acidosis and complex I deficiency. J Neurol. 1990 Nov;237(7):399–404. doi: 10.1007/BF00314729. [DOI] [PubMed] [Google Scholar]
  6. Blei M. L., Conley K. E., Kushmerick M. J. Separate measures of ATP utilization and recovery in human skeletal muscle. J Physiol. 1993 Jun;465:203–222. doi: 10.1113/jphysiol.1993.sp019673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CHANCE B., WILLIAMS G. R. Respiratory enzymes in oxidative phosphorylation. I. Kinetics of oxygen utilization. J Biol Chem. 1955 Nov;217(1):383–393. [PubMed] [Google Scholar]
  8. Chance B., Eleff S., Bank W., Leigh J. S., Jr, Warnell R. 31P NMR studies of control of mitochondrial function in phosphofructokinase-deficient human skeletal muscle. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7714–7718. doi: 10.1073/pnas.79.24.7714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Chance B., Eleff S., Leigh J. S., Jr, Sokolow D., Sapega A. Mitochondrial regulation of phosphocreatine/inorganic phosphate ratios in exercising human muscle: a gated 31P NMR study. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6714–6718. doi: 10.1073/pnas.78.11.6714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chance B., Leigh J. S., Jr, Clark B. J., Maris J., Kent J., Nioka S., Smith D. Control of oxidative metabolism and oxygen delivery in human skeletal muscle: a steady-state analysis of the work/energy cost transfer function. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8384–8388. doi: 10.1073/pnas.82.24.8384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Chance B., Leigh J. S., Jr, Kent J., McCully K. Metabolic control principles and 31P NMR. Fed Proc. 1986 Dec;45(13):2915–2920. [PubMed] [Google Scholar]
  12. Dalakas M. C., Illa I., Pezeshkpour G. H., Laukaitis J. P., Cohen B., Griffin J. L. Mitochondrial myopathy caused by long-term zidovudine therapy. N Engl J Med. 1990 Apr 19;322(16):1098–1105. doi: 10.1056/NEJM199004193221602. [DOI] [PubMed] [Google Scholar]
  13. Dalakas M. C., Leon-Monzon M. E., Bernardini I., Gahl W. A., Jay C. A. Zidovudine-induced mitochondrial myopathy is associated with muscle carnitine deficiency and lipid storage. Ann Neurol. 1994 Apr;35(4):482–487. doi: 10.1002/ana.410350418. [DOI] [PubMed] [Google Scholar]
  14. Kemp G. J., Radda G. K. Quantitative interpretation of bioenergetic data from 31P and 1H magnetic resonance spectroscopic studies of skeletal muscle: an analytical review. Magn Reson Q. 1994 Mar;10(1):43–63. [PubMed] [Google Scholar]
  15. Kemp G. J., Taylor D. J., Thompson C. H., Hands L. J., Rajagopalan B., Styles P., Radda G. K. Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise. NMR Biomed. 1993 Sep-Oct;6(5):302–310. doi: 10.1002/nbm.1940060504. [DOI] [PubMed] [Google Scholar]
  16. Kish S. J., Mamelak M., Slimovitch C., Dixon L. M., Lewis A., Shannak K., DiStefano L., Chang L. J., Hornykiewicz O. Brain neurotransmitter changes in human narcolepsy. Neurology. 1992 Jan;42(1):229–234. doi: 10.1212/wnl.42.1.229. [DOI] [PubMed] [Google Scholar]
  17. Lewis W., Dalakas M. C. Mitochondrial toxicity of antiviral drugs. Nat Med. 1995 May;1(5):417–422. doi: 10.1038/nm0595-417. [DOI] [PubMed] [Google Scholar]
  18. Lewis W., Gonzalez B., Chomyn A., Papoian T. Zidovudine induces molecular, biochemical, and ultrastructural changes in rat skeletal muscle mitochondria. J Clin Invest. 1992 Apr;89(4):1354–1360. doi: 10.1172/JCI115722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mahler M. First-order kinetics of muscle oxygen consumption, and an equivalent proportionality between QO2 and phosphorylcreatine level. Implications for the control of respiration. J Gen Physiol. 1985 Jul;86(1):135–165. doi: 10.1085/jgp.86.1.135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matthews P. M., Allaire C., Shoubridge E. A., Karpati G., Carpenter S., Arnold D. L. In vivo muscle magnetic resonance spectroscopy in the clinical investigation of mitochondrial disease. Neurology. 1991 Jan;41(1):114–120. doi: 10.1212/wnl.41.1.114. [DOI] [PubMed] [Google Scholar]
  21. McCully K. K., Fielding R. A., Evans W. J., Leigh J. S., Jr, Posner J. D. Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles. J Appl Physiol (1985) 1993 Aug;75(2):813–819. doi: 10.1152/jappl.1993.75.2.813. [DOI] [PubMed] [Google Scholar]
  22. Meyer R. A. A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am J Physiol. 1988 Apr;254(4 Pt 1):C548–C553. doi: 10.1152/ajpcell.1988.254.4.C548. [DOI] [PubMed] [Google Scholar]
  23. Meyer R. A., Kuchmerick M. J., Brown T. R. Application of 31P-NMR spectroscopy to the study of striated muscle metabolism. Am J Physiol. 1982 Jan;242(1):C1–11. doi: 10.1152/ajpcell.1982.242.1.C1. [DOI] [PubMed] [Google Scholar]
  24. Mhiri C., Baudrimont M., Bonne G., Geny C., Degoul F., Marsac C., Roullet E., Gherardi R. Zidovudine myopathy: a distinctive disorder associated with mitochondrial dysfunction. Ann Neurol. 1991 Jun;29(6):606–614. doi: 10.1002/ana.410290607. [DOI] [PubMed] [Google Scholar]
  25. Miller R. G., Carson P. J., Moussavi R. S., Green A. T., Baker A. J., Weiner M. W. Fatigue and myalgia in AIDS patients. Neurology. 1991 Oct;41(10):1603–1607. doi: 10.1212/wnl.41.10.1603. [DOI] [PubMed] [Google Scholar]
  26. Minotti J. R., Johnson E. C., Hudson T. L., Zuroske G., Murata G., Fukushima E., Cagle T. G., Chick T. W., Massie B. M., Icenogle M. V. Skeletal muscle response to exercise training in congestive heart failure. J Clin Invest. 1990 Sep;86(3):751–758. doi: 10.1172/JCI114771. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Moon R. B., Richards J. H. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem. 1973 Oct 25;248(20):7276–7278. [PubMed] [Google Scholar]
  28. Pezeshkpour G., Illa I., Dalakas M. C. Ultrastructural characteristics and DNA immunocytochemistry in human immunodeficiency virus and zidovudine-associated myopathies. Hum Pathol. 1991 Dec;22(12):1281–1288. doi: 10.1016/0046-8177(91)90112-3. [DOI] [PubMed] [Google Scholar]
  29. Radda G. K., Bore P. J., Gadian D. G., Ross B. D., Styles P., Taylor D. J., Morgan-Hughes J. 31P NMR examination of two patients with NADH-CoQ reductase deficiency. Nature. 1982 Feb 18;295(5850):608–609. doi: 10.1038/295608a0. [DOI] [PubMed] [Google Scholar]
  30. Radda G. K. The use of NMR spectroscopy for the understanding of disease. Science. 1986 Aug 8;233(4764):640–645. doi: 10.1126/science.3726553. [DOI] [PubMed] [Google Scholar]
  31. Simpson M. V., Chin C. D., Keilbaugh S. A., Lin T. S., Prusoff W. H. Studies on the inhibition of mitochondrial DNA replication by 3'-azido-3'-deoxythymidine and other dideoxynucleoside analogs which inhibit HIV-1 replication. Biochem Pharmacol. 1989 Apr 1;38(7):1033–1036. doi: 10.1016/0006-2952(89)90245-1. [DOI] [PubMed] [Google Scholar]
  32. Taylor D. J., Bore P. J., Styles P., Gadian D. G., Radda G. K. Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med. 1983 Jul;1(1):77–94. [PubMed] [Google Scholar]
  33. Veech R. L., Lawson J. W., Cornell N. W., Krebs H. A. Cytosolic phosphorylation potential. J Biol Chem. 1979 Jul 25;254(14):6538–6547. [PubMed] [Google Scholar]
  34. Weissman J. D., Constantinitis I., Hudgins P., Wallace D. C. 31P magnetic resonance spectroscopy suggests impaired mitochondrial function in AZT-treated HIV-infected patients. Neurology. 1992 Mar;42(3 Pt 1):619–623. doi: 10.1212/wnl.42.3.619. [DOI] [PubMed] [Google Scholar]
  35. Wilson J. R., Fink L., Maris J., Ferraro N., Power-Vanwart J., Eleff S., Chance B. Evaluation of energy metabolism in skeletal muscle of patients with heart failure with gated phosphorus-31 nuclear magnetic resonance. Circulation. 1985 Jan;71(1):57–62. doi: 10.1161/01.cir.71.1.57. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES