Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Jul;96(1):327–333. doi: 10.1172/JCI118038

Parathyroid hormone gene expression in hypophosphatemic rats.

R Kilav 1, J Silver 1, T Naveh-Many 1
PMCID: PMC185204  PMID: 7615802

Abstract

Phosphate is central to bone metabolism and we have therefore studied whether parathyroid hormone (PTH) is regulated by dietary phosphate in vivo. Weanling rats were fed diets with different phosphate contents for 3 wk: low phosphate (0.02%), normal calcium (0.6%), normal phosphate (0.3%), and calcium (0.6%); high phosphate (1.2%), high calcium (1.2%). The low phosphate diet led to hypophosphatemia, hypercalcemia, and increased serum 1,25(OH)2D3 together with decreased PTH mRNA levels (25 +/- 8% of controls, P < 0.01) and serum immunoreactive PTH (4.7 +/- 0.8: 22.1 +/- 3.7 pg/ml; low phosphate: control, P < 0.05). A high phosphate diet led to increased PTH mRNA levels. In situ hybridization showed that hypophosphatemia decreased PTH mRNA in all the parathyroid cells. To separate the effect of low phosphate from changes in calcium and vitamin D rats were fed diets to maintain them as vitamin D-deficient and normocalcemic despite the hypophosphatemia. Hypophosphatemic, normocalemic rats with normal serum 1,25(OH)2D3 levels still had decreased PTH mRNAs. Nuclear transcript run-ons showed that the effect of low phosphate was posttranscriptional. Calcium and 1,25(OH)2D3 regulate the parathyroid and we now show that dietary phosphate also regulates the parathyroid by a mechanism which remains to be defined.

Full text

PDF
328

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aparicio M., Combe C., Lafage M. H., de Precigout V., Potaux L., Bouchet J. L. In advanced renal failure, dietary phosphorus restriction reverses hyperparathyroidism independent of changes in the levels of calcitriol. Nephron. 1993;63(1):122–123. doi: 10.1159/000187162. [DOI] [PubMed] [Google Scholar]
  2. Barac-Nieto M., Corey H., Liu S. M., Spitzer A. Role of intracellular phosphate in the regulation of renal phosphate transport during development. Pediatr Nephrol. 1993 Dec;7(6):819–822. doi: 10.1007/BF01213367. [DOI] [PubMed] [Google Scholar]
  3. Barac-Nieto M., Dowd T. L., Gupta R. K., Spitzer A. Changes in NMR-visible kidney cell phosphate with age and diet: relationship to phosphate transport. Am J Physiol. 1991 Jul;261(1 Pt 2):F153–F162. doi: 10.1152/ajprenal.1991.261.1.F153. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J., Irvine R. F. Inositol phosphates and cell signalling. Nature. 1989 Sep 21;341(6239):197–205. doi: 10.1038/341197a0. [DOI] [PubMed] [Google Scholar]
  5. Biber J., Forgo J., Murer H. Modulation of Na+-Pi cotransport in opossum kidney cells by extracellular phosphate. Am J Physiol. 1988 Aug;255(2 Pt 1):C155–C161. doi: 10.1152/ajpcell.1988.255.2.C155. [DOI] [PubMed] [Google Scholar]
  6. Bourdeau A., Souberbielle J. C., Bonnet P., Herviaux P., Sachs C., Lieberherr M. Phospholipase-A2 action and arachidonic acid metabolism in calcium-mediated parathyroid hormone secretion. Endocrinology. 1992 Mar;130(3):1339–1344. doi: 10.1210/endo.130.3.1537295. [DOI] [PubMed] [Google Scholar]
  7. Brown E. M. Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev. 1991 Apr;71(2):371–411. doi: 10.1152/physrev.1991.71.2.371. [DOI] [PubMed] [Google Scholar]
  8. Brown E. M., Gamba G., Riccardi D., Lombardi M., Butters R., Kifor O., Sun A., Hediger M. A., Lytton J., Hebert S. C. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993 Dec 9;366(6455):575–580. doi: 10.1038/366575a0. [DOI] [PubMed] [Google Scholar]
  9. Brown E. M., Redgrave J., Thatcher J. Effect of the phorbol ester TPA on PTH secretion. Evidence for a role for protein kinase C in the control of PTH release. FEBS Lett. 1984 Sep 17;175(1):72–75. doi: 10.1016/0014-5793(84)80572-4. [DOI] [PubMed] [Google Scholar]
  10. Brown E. M., Wilson R. E., Eastman R. C., Pallotta J., Marynick S. P. Abnormal regulation of parathyroid hormone release by calcium in secondary hyperparathyroidism due to chronic renal failure. J Clin Endocrinol Metab. 1982 Jan;54(1):172–179. doi: 10.1210/jcem-54-1-172. [DOI] [PubMed] [Google Scholar]
  11. Caverzasio J., Brown C. D., Biber J., Bonjour J. P., Murer H. Adaptation of phosphate transport in phosphate-deprived LLC-PK1 cells. Am J Physiol. 1985 Jan;248(1 Pt 2):F122–F127. doi: 10.1152/ajprenal.1985.248.1.F122. [DOI] [PubMed] [Google Scholar]
  12. Combe C., Aparicio M. Phosphorus and protein restriction and parathyroid function in chronic renal failure. Kidney Int. 1994 Nov;46(5):1381–1386. doi: 10.1038/ki.1994.408. [DOI] [PubMed] [Google Scholar]
  13. Condamine L., Menaa C., Vrtovsnik F., Vztovsnik F., Friedlander G., Garabédian M. Local action of phosphate depletion and insulin-like growth factor 1 on in vitro production of 1,25-dihydroxyvitamin D by cultured mammalian kidney cells. J Clin Invest. 1994 Oct;94(4):1673–1679. doi: 10.1172/JCI117512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Demay M. B., Kiernan M. S., DeLuca H. F., Kronenberg H. M. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8097–8101. doi: 10.1073/pnas.89.17.8097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Escoubet B., Djabali K., Amiel C. Adaptation to Pi deprivation of cell Na-dependent Pi uptake: a widespread process. Am J Physiol. 1989 Feb;256(2 Pt 1):C322–C328. doi: 10.1152/ajpcell.1989.256.2.C322. [DOI] [PubMed] [Google Scholar]
  16. Escoubet B., Garestier M. C., Le Grimellec C., Amiel C. Multiple modulation of Na-dependent Pi uptake by cellular Ca in MDCK cells. Am J Physiol. 1993 Jul;265(1 Pt 1):C19–C27. doi: 10.1152/ajpcell.1993.265.1.C19. [DOI] [PubMed] [Google Scholar]
  17. Groudine M., Peretz M., Weintraub H. Transcriptional regulation of hemoglobin switching in chicken embryos. Mol Cell Biol. 1981 Mar;1(3):281–288. doi: 10.1128/mcb.1.3.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lafage M. H., Combe C., Fournier A., Aparicio M. Ketodiet, physiological calcium intake and native vitamin D improve renal osteodystrophy. Kidney Int. 1992 Nov;42(5):1217–1225. doi: 10.1038/ki.1992.407. [DOI] [PubMed] [Google Scholar]
  19. Lawrence J. B., Singer R. H. Intracellular localization of messenger RNAs for cytoskeletal proteins. Cell. 1986 May 9;45(3):407–415. doi: 10.1016/0092-8674(86)90326-0. [DOI] [PubMed] [Google Scholar]
  20. Lopez-Hilker S., Dusso A. S., Rapp N. S., Martin K. J., Slatopolsky E. Phosphorus restriction reverses hyperparathyroidism in uremia independent of changes in calcium and calcitriol. Am J Physiol. 1990 Sep;259(3 Pt 2):F432–F437. doi: 10.1152/ajprenal.1990.259.3.F432. [DOI] [PubMed] [Google Scholar]
  21. Lucas P. A., Brown R. C., Woodhead J. S., Coles G. A. 1,25-dihydroxycholecalciferol and parathyroid hormone in advanced chronic renal failure: effects of simultaneous protein and phosphorus restriction. Clin Nephrol. 1986 Jan;25(1):7–10. [PubMed] [Google Scholar]
  22. Naveh-Many T., Almogi G., Livni N., Silver J. Estrogen receptors and biologic response in rat parathyroid tissue and C cells. J Clin Invest. 1992 Dec;90(6):2434–2438. doi: 10.1172/JCI116134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Naveh-Many T., Friedlaender M. M., Mayer H., Silver J. Calcium regulates parathyroid hormone messenger ribonucleic acid (mRNA), but not calcitonin mRNA in vivo in the rat. Dominant role of 1,25-dihydroxyvitamin D. Endocrinology. 1989 Jul;125(1):275–280. doi: 10.1210/endo-125-1-275. [DOI] [PubMed] [Google Scholar]
  24. Naveh-Many T., Raue F., Grauer A., Silver J. Regulation of calcitonin gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J Bone Miner Res. 1992 Oct;7(10):1233–1237. doi: 10.1002/jbmr.5650071016. [DOI] [PubMed] [Google Scholar]
  25. Naveh-Many T., Silver J. Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J Clin Invest. 1990 Oct;86(4):1313–1319. doi: 10.1172/JCI114840. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Okazaki T., Igarashi T., Kronenberg H. M. 5'-flanking region of the parathyroid hormone gene mediates negative regulation by 1,25-(OH)2 vitamin D3. J Biol Chem. 1988 Feb 15;263(5):2203–2208. [PubMed] [Google Scholar]
  27. Portale A. A., Booth B. E., Halloran B. P., Morris R. C., Jr Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest. 1984 Jun;73(6):1580–1589. doi: 10.1172/JCI111365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Portale A. A., Halloran B. P., Morris R. C., Jr Physiologic regulation of the serum concentration of 1,25-dihydroxyvitamin D by phosphorus in normal men. J Clin Invest. 1989 May;83(5):1494–1499. doi: 10.1172/JCI114043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ramirez J. A., Goodman W. G., Gornbein J., Menezes C., Moulton L., Segre G. V., Salusky I. B. Direct in vivo comparison of calcium-regulated parathyroid hormone secretion in normal volunteers and patients with secondary hyperparathyroidism. J Clin Endocrinol Metab. 1993 Jun;76(6):1489–1494. doi: 10.1210/jcem.76.6.8501155. [DOI] [PubMed] [Google Scholar]
  30. Raynolds M. V., Awald P. D., Gordon D. F., Gutierrez-Hartmann A., Rule D. C., Wood W. M., Eckel R. H. Lipoprotein lipase gene expression in rat adipocytes is regulated by isoproterenol and insulin through different mechanisms. Mol Endocrinol. 1990 Sep;4(9):1416–1422. doi: 10.1210/mend-4-9-1416. [DOI] [PubMed] [Google Scholar]
  31. Sherwood L. M., Mayer G. P., Ramberg C. F., Jr, Kronfeld D. S., Aurbach G. D., Potts J. T., Jr Regulation of parathyroid hormone secretion: proportional control by calcium, lack of effect of phosphate. Endocrinology. 1968 Nov;83(5):1043–1051. doi: 10.1210/endo-83-5-1043. [DOI] [PubMed] [Google Scholar]
  32. Silver J., Naveh-Many T., Mayer H., Schmelzer H. J., Popovtzer M. M. Regulation by vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest. 1986 Nov;78(5):1296–1301. doi: 10.1172/JCI112714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Silver J., Russell J., Sherwood L. M. Regulation by vitamin D metabolites of messenger ribonucleic acid for preproparathyroid hormone in isolated bovine parathyroid cells. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4270–4273. doi: 10.1073/pnas.82.12.4270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Slatopolsky E., Bricker N. S. The role of phosphorus restriction in the prevention of secondary hyperparathyroidism in chronic renal disease. Kidney Int. 1973 Aug;4(2):141–145. doi: 10.1038/ki.1973.92. [DOI] [PubMed] [Google Scholar]
  35. Tanaka Y., Deluca H. F. The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys. 1973 Feb;154(2):566–574. doi: 10.1016/0003-9861(73)90010-6. [DOI] [PubMed] [Google Scholar]
  36. Yamamoto M., Igarashi T., Muramatsu M., Fukagawa M., Motokura T., Ogata E. Hypocalcemia increases and hypercalcemia decreases the steady-state level of parathyroid hormone messenger RNA in the rat. J Clin Invest. 1989 Mar;83(3):1053–1056. doi: 10.1172/JCI113946. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES