Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1995 Jul;96(1):401–410. doi: 10.1172/JCI118049

Inhibitors of cyclic nucleotide phosphodiesterase isozymes type-III and type-IV suppress mitogenesis of rat mesangial cells.

K Matousovic 1, J P Grande 1, C C Chini 1, E N Chini 1, T P Dousa 1
PMCID: PMC185213  PMID: 7615811

Abstract

We studied interactions between the mitogen-activated protein kinase (MAPK) signalling pathway and cAMP-protein kinase (PKA) signaling pathway in regulation of mitogenesis of mesangial cells (MC) determined by [3H]thymidine incorporation, with or without added EGF. Forskolin or dibutyryl cAMP strongly (by 60-70%) inhibited [3H]thymidine incorporation into MC. Cilostamide, lixazinone or cilostazol selective inhibitors of cAMP-phosphodiesterase (PDE) isozyme PDE-III, inhibited mitogenesis to similar extent as forskolin and DBcAMP and activated in situ PKA, but without detectable increase in cAMP levels. Cilostamide and cilostazol were more than three times more effective at inhibiting mesangial mitogenesis than rolipram and denbufylline, inhibitors of isozyme PDE-IV, even though PDE-IV was two times more abundant in MC than was PDE-III. On the other hand, when incubated with forskolin, rolipram-enhanced cAMP accumulation was far greater (10-100x) than with cilostamide. EGF increased MAPK activity (+300%); PDE isozyme inhibitors which suppressed mitogenesis also inhibited MAPK. PDE isozyme inhibitors also suppressed PDGF-stimulated MC proliferation. We conclude that cAMP inhibits the mitogen-dependent MAPK-signaling pathway probably by decreasing the activity of Raf-1 due to PKA-catalyzed phosphorylation. Further, we surmise that minor increase in the cAMP pool metabolized by PDE-III is intimately related to regulation of mesangial proliferation. Thus, PDE isozyme inhibitors have the potential to suppress MC proliferation by a focused effect upon signaling pathways.

Full text

PDF
409

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abboud H. E. Growth factors and the mesangium. J Am Soc Nephrol. 1992 Apr;2(10 Suppl):S185–S189. doi: 10.1681/ASN.V210s185. [DOI] [PubMed] [Google Scholar]
  2. Abboud H. E. Growth factors in glomerulonephritis. Kidney Int. 1993 Jan;43(1):252–267. doi: 10.1038/ki.1993.39. [DOI] [PubMed] [Google Scholar]
  3. Alvarez R., Banerjee G. L., Bruno J. J., Jones G. L., Littschwager K., Strosberg A. M., Venuti M. C. A potent and selective inhibitor of cyclic AMP phosphodiesterase with potential cardiotonic and antithrombotic properties. Mol Pharmacol. 1986 Jun;29(6):554–560. [PubMed] [Google Scholar]
  4. Beavo J. A., Conti M., Heaslip R. J. Multiple cyclic nucleotide phosphodiesterases. Mol Pharmacol. 1994 Sep;46(3):399–405. [PubMed] [Google Scholar]
  5. Beavo J. A., Reifsnyder D. H. Primary sequence of cyclic nucleotide phosphodiesterase isozymes and the design of selective inhibitors. Trends Pharmacol Sci. 1990 Apr;11(4):150–155. doi: 10.1016/0165-6147(90)90066-H. [DOI] [PubMed] [Google Scholar]
  6. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  7. Cattell V. Macrophages in acute glomerular inflammation. Kidney Int. 1994 Apr;45(4):945–952. doi: 10.1038/ki.1994.128. [DOI] [PubMed] [Google Scholar]
  8. Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem. 1990 Mar 25;265(9):5267–5272. [PubMed] [Google Scholar]
  9. Chini C. C., Chini E. N., Williams J. M., Matousovic K., Dousa T. P. Formation of reactive oxygen metabolites in glomeruli is suppressed by inhibition of cAMP phosphodiesterase isozyme type IV. Kidney Int. 1994 Jul;46(1):28–36. doi: 10.1038/ki.1994.241. [DOI] [PubMed] [Google Scholar]
  10. Cook S. J., McCormick F. Inhibition by cAMP of Ras-dependent activation of Raf. Science. 1993 Nov 12;262(5136):1069–1072. doi: 10.1126/science.7694367. [DOI] [PubMed] [Google Scholar]
  11. Corbin J. D. Determination of the cAMP-dependent protein kinase activity ratio in intact tissues. Methods Enzymol. 1983;99:227–232. doi: 10.1016/0076-6879(83)99057-2. [DOI] [PubMed] [Google Scholar]
  12. Davis R. J. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993 Jul 15;268(20):14553–14556. [PubMed] [Google Scholar]
  13. Dufau M. L., Tsuruhara T., Horner K. A., Podesta E., Catt K. J. Intermediate role of adenosine 3':5'-cyclic monophosphate and protein kinase during gonadotropin-induced steroidogenesis in testicular interstitial cells. Proc Natl Acad Sci U S A. 1977 Aug;74(8):3419–3423. doi: 10.1073/pnas.74.8.3419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dumont J. E., Jauniaux J. C., Roger P. P. The cyclic AMP-mediated stimulation of cell proliferation. Trends Biochem Sci. 1989 Feb;14(2):67–71. doi: 10.1016/0968-0004(89)90046-7. [DOI] [PubMed] [Google Scholar]
  15. Elks M. L., Manganiello V. C. Selective effects of phosphodiesterase inhibitors on different phosphodiesterases, adenosine 3',5'-monophosphate metabolism, and lipolysis in 3T3-L1 adipocytes. Endocrinology. 1984 Oct;115(4):1262–1268. doi: 10.1210/endo-115-4-1262. [DOI] [PubMed] [Google Scholar]
  16. Floege J., Eng E., Young B. A., Johnson R. J. Factors involved in the regulation of mesangial cell proliferation in vitro and in vivo. Kidney Int Suppl. 1993 Jan;39:S47–S54. [PubMed] [Google Scholar]
  17. Frödin M., Peraldi P., Van Obberghen E. Cyclic AMP activates the mitogen-activated protein kinase cascade in PC12 cells. J Biol Chem. 1994 Feb 25;269(8):6207–6214. [PubMed] [Google Scholar]
  18. Giembycz M. A. Could isoenzyme-selective phosphodiesterase inhibitors render bronchodilator therapy redundant in the treatment of bronchial asthma? Biochem Pharmacol. 1992 May 28;43(10):2041–2051. doi: 10.1016/0006-2952(92)90160-k. [DOI] [PubMed] [Google Scholar]
  19. Grande J. P., Jones M. L., Swenson C. L., Killen P. D., Warren J. S. Lipopolysaccharide induces monocyte chemoattractant protein production by rat mesangial cells. J Lab Clin Med. 1994 Jul;124(1):112–117. [PubMed] [Google Scholar]
  20. Graves L. M., Bornfeldt K. E., Raines E. W., Potts B. C., Macdonald S. G., Ross R., Krebs E. G. Protein kinase A antagonizes platelet-derived growth factor-induced signaling by mitogen-activated protein kinase in human arterial smooth muscle cells. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10300–10304. doi: 10.1073/pnas.90.21.10300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hall A. A biochemical function for ras--at last. Science. 1994 Jun 3;264(5164):1413–1414. doi: 10.1126/science.8197454. [DOI] [PubMed] [Google Scholar]
  22. Iwashita S., Kobayashi M. Signal transduction system for growth factor receptors associated with tyrosine kinase activity: epidermal growth factor receptor signalling and its regulation. Cell Signal. 1992 Mar;4(2):123–132. doi: 10.1016/0898-6568(92)90076-k. [DOI] [PubMed] [Google Scholar]
  23. Johnson R. J. The glomerular response to injury: progression or resolution? Kidney Int. 1994 Jun;45(6):1769–1782. doi: 10.1038/ki.1994.230. [DOI] [PubMed] [Google Scholar]
  24. Kemp B. E., Cheng H. C., Walsh D. A. Peptide inhibitors of cAMP-dependent protein kinase. Methods Enzymol. 1988;159:173–183. doi: 10.1016/0076-6879(88)59018-3. [DOI] [PubMed] [Google Scholar]
  25. Marx J. Two major signal pathways linked. Science. 1993 Nov 12;262(5136):988–990. doi: 10.1126/science.8257559. [DOI] [PubMed] [Google Scholar]
  26. Nicholson C. D., Challiss R. A., Shahid M. Differential modulation of tissue function and therapeutic potential of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes. Trends Pharmacol Sci. 1991 Jan;12(1):19–27. doi: 10.1016/0165-6147(91)90484-a. [DOI] [PubMed] [Google Scholar]
  27. Nishida E., Gotoh Y. The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci. 1993 Apr;18(4):128–131. doi: 10.1016/0968-0004(93)90019-j. [DOI] [PubMed] [Google Scholar]
  28. Rassier M. E., McIntyre S. J., Yamaki M., Takeda S., Lin J. T., Dousa T. P. Isozymes of cyclic-3',5'-nucleotide phosphodiesterases in renal epithelial LLC-PK1 cells. Kidney Int. 1992 Jan;41(1):88–99. doi: 10.1038/ki.1992.12. [DOI] [PubMed] [Google Scholar]
  29. Robbins D. J., Zhen E., Cheng M., Xu S., Vanderbilt C. A., Ebert D., Garcia C., Dang A., Cobb M. H. Regulation and properties of extracellular signal-regulated protein kinases 1, 2, and 3. J Am Soc Nephrol. 1993 Nov;4(5):1104–1110. doi: 10.1681/ASN.V451104. [DOI] [PubMed] [Google Scholar]
  30. Sadler S. E. Type III phosphodiesterase plays a necessary role in the growth-promoting actions of insulin, insulin-like growth factor-I, and Ha p21ras in Xenopus laevis oocytes. Mol Endocrinol. 1991 Dec;5(12):1939–1946. doi: 10.1210/mend-5-12-1939. [DOI] [PubMed] [Google Scholar]
  31. Sadowski H. B., Shuai K., Darnell J. E., Jr, Gilman M. Z. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science. 1993 Sep 24;261(5129):1739–1744. doi: 10.1126/science.8397445. [DOI] [PubMed] [Google Scholar]
  32. Schudt C., Winder S., Eltze M., Kilian U., Beume R. Zardaverine: a cyclic AMP specific PDE III/IV inhibitor. Agents Actions Suppl. 1991;34:379–402. [PubMed] [Google Scholar]
  33. Sevetson B. R., Kong X., Lawrence J. C., Jr Increasing cAMP attenuates activation of mitogen-activated protein kinase. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):10305–10309. doi: 10.1073/pnas.90.21.10305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Stokoe D., Macdonald S. G., Cadwallader K., Symons M., Hancock J. F. Activation of Raf as a result of recruitment to the plasma membrane. Science. 1994 Jun 3;264(5164):1463–1467. doi: 10.1126/science.7811320. [DOI] [PubMed] [Google Scholar]
  35. Sugimoto T., Kikkawa R., Haneda M., Shigeta Y. Atrial natriuretic peptide inhibits endothelin-1-induced activation of mitogen-activated protein kinase in cultured rat mesangial cells. Biochem Biophys Res Commun. 1993 Aug 31;195(1):72–78. doi: 10.1006/bbrc.1993.2011. [DOI] [PubMed] [Google Scholar]
  36. Wang Y., Simonson M. S., Pouysségur J., Dunn M. J. Endothelin rapidly stimulates mitogen-activated protein kinase activity in rat mesangial cells. Biochem J. 1992 Oct 15;287(Pt 2):589–594. doi: 10.1042/bj2870589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Weishaar R. E., Kobylarz-Singer D. C., Steffen R. P., Kaplan H. R. Subclasses of cyclic AMP-specific phosphodiesterase in left ventricular muscle and their involvement in regulating myocardial contractility. Circ Res. 1987 Oct;61(4):539–547. doi: 10.1161/01.res.61.4.539. [DOI] [PubMed] [Google Scholar]
  38. Wells J. N., Garst J. E., Kramer G. L. Inhibition of separated forms of cyclic nucleotide phosphodiesterase from pig coronary arteries by 1,3-disubstituted and 1,3,8-trisubstituted xanthines. J Med Chem. 1981 Aug;24(8):954–958. doi: 10.1021/jm00140a008. [DOI] [PubMed] [Google Scholar]
  39. Wu J., Dent P., Jelinek T., Wolfman A., Weber M. J., Sturgill T. W. Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3',5'-monophosphate. Science. 1993 Nov 12;262(5136):1065–1069. doi: 10.1126/science.7694366. [DOI] [PubMed] [Google Scholar]
  40. Yamaki M., McIntyre S., Rassier M. E., Schwartz J. H., Dousa T. P. Cyclic 3',5'-nucleotide diesterases in dynamics of cAMP and cGMP in rat collecting duct cells. Am J Physiol. 1992 Jun;262(6 Pt 2):F957–F964. doi: 10.1152/ajprenal.1992.262.6.F957. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES