Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1987 Aug;91(4):823–832. doi: 10.1111/j.1476-5381.1987.tb11281.x

Differential sensitivity of models of antinociception in the rat, mouse and guinea-pig to mu- and kappa-opioid receptor agonists.

A G Hayes 1, M J Sheehan 1, M B Tyers 1
PMCID: PMC1853585  PMID: 2822190

Abstract

1 A range of opioid receptor agonists were tested for activity in five antinociceptive models: the acetylcholine-induced abdominal constriction, tail-flick and hot plate tests in the mouse and the paw pressure test in the rat and guinea-pig. 2 Agonists acting preferentially at the kappa-opioid receptor were significantly more potent in the guinea-pig than in the rat paw pressure test, whereas mu-receptor preferring agonists were equipotent in the two tests. The mouse abdominal constriction test was of equal sensitivity to the guinea-pig pressure test for both types of agonist. 3 The mouse tail-flick and hot plate tests were progressively less sensitive than the other three tests, particularly to kappa-receptor preferring agonists. 4 The efficacy of an agonist can also markedly affect its activity in antinociceptive tests. Thus, partial kappa-agonists were weak or inactive in the rat paw pressure test, and partial agonists at both mu- and kappa-opioid receptors were relatively weak in the tests in which heat was the noxious stimulus, particularly the mouse hot plate test. 5 The mouse abdominal constriction test is suggested as the most appropriate antinociceptive model for testing a broad range of opioid agonists, whilst the relative potency of a drug in the rat and guinea-pig paw pressure tests may indicate the degree to which it is selective for kappa-opioid receptors in vivo.

Full text

PDF
823

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chaillet P., Coulaud A., Zajac J. M., Fournie-Zaluski M. C., Costentin J., Roques B. P. The mu rather than the delta subtype of opioid receptors appears to be involved in enkephalin-induced analgesia. Eur J Pharmacol. 1984 May 18;101(1-2):83–90. doi: 10.1016/0014-2999(84)90033-5. [DOI] [PubMed] [Google Scholar]
  2. Galligan J. J., Mosberg H. I., Hurst R., Hruby V. J., Burks T. F. Cerebral delta opioid receptors mediate analgesia but not the intestinal motility effects of intracerebroventricularly administered opioids. J Pharmacol Exp Ther. 1984 Jun;229(3):641–648. [PubMed] [Google Scholar]
  3. Gillan M. G., Kosterlitz H. W. Spectrum of the mu, delta- and kappa-binding sites in homogenates of rat brain. Br J Pharmacol. 1982 Nov;77(3):461–469. doi: 10.1111/j.1476-5381.1982.tb09319.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hayes A. G., Sheehan M. J., Tyers M. B. Determination of the receptor selectivity of opioid agonists in the guinea-pig ileum and mouse vas deferens by use of beta-funaltrexamine. Br J Pharmacol. 1985 Dec;86(4):899–904. doi: 10.1111/j.1476-5381.1985.tb11112.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hayes A. G., Tyers M. B. Determination of receptors that mediate opiate side effects in the mouse. Br J Pharmacol. 1983 Jul;79(3):731–736. doi: 10.1111/j.1476-5381.1983.tb10011.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hayes A., Kelly A. Profile of activity of kappa receptor agonists in the rabbit vas deferens. Eur J Pharmacol. 1985 Apr 16;110(3):317–322. doi: 10.1016/0014-2999(85)90558-8. [DOI] [PubMed] [Google Scholar]
  7. Hutchinson M., Kosterlitz H. W., Leslie F. M., Waterfield A. A. Assessment in the guinea-pig ileum and mouse vas deferens of benzomorphans which have strong antinociceptive activity but do not substitute for morphine in the dependent monkey. Br J Pharmacol. 1975 Dec;55(4):541–546. doi: 10.1111/j.1476-5381.1975.tb07430.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kosterlitz H. W., Paterson S. J., Robson L. E. Characterization of the kappa-subtype of the opiate receptor in the guinea-pig brain. Br J Pharmacol. 1981 Aug;73(4):939–949. doi: 10.1111/j.1476-5381.1981.tb08749.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Leander J. D. A kappa opioid effect: increased urination in the rat. J Pharmacol Exp Ther. 1983 Jan;224(1):89–94. [PubMed] [Google Scholar]
  10. Leander J. D. Evidence that nalorphine, butorphanol and oxilorphan are partial agonists at a kappa-opioid receptor. Eur J Pharmacol. 1983 Jan 21;86(3-4):467–470. doi: 10.1016/0014-2999(83)90198-x. [DOI] [PubMed] [Google Scholar]
  11. Lord J. A., Waterfield A. A., Hughes J., Kosterlitz H. W. Endogenous opioid peptides: multiple agonists and receptors. Nature. 1977 Jun 9;267(5611):495–499. doi: 10.1038/267495a0. [DOI] [PubMed] [Google Scholar]
  12. Magnan J., Paterson S. J., Tavani A., Kosterlitz H. W. The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties. Naunyn Schmiedebergs Arch Pharmacol. 1982 Jun;319(3):197–205. doi: 10.1007/BF00495865. [DOI] [PubMed] [Google Scholar]
  13. Martin W. R., Eades C. G., Thompson J. A., Huppler R. E., Gilbert P. E. The effects of morphine- and nalorphine- like drugs in the nondependent and morphine-dependent chronic spinal dog. J Pharmacol Exp Ther. 1976 Jun;197(3):517–532. [PubMed] [Google Scholar]
  14. Miller L., Shaw J. S. Characterisation of the delta-opioid receptor on the hamster vas deferens. Neuropeptides. 1985 Dec;6(6):531–536. doi: 10.1016/0143-4179(85)90115-5. [DOI] [PubMed] [Google Scholar]
  15. Oka T., Negishi K., Suda M., Matsumiya T., Inazu T., Ueki M. Rabbit vas deferens: a specific bioassay for opioid kappa-receptor agonists. Eur J Pharmacol. 1981 Jul 17;73(2-3):235–236. doi: 10.1016/0014-2999(81)90098-4. [DOI] [PubMed] [Google Scholar]
  16. Pasternak G. W., Adler B. A., Rodriguez J. Characterization of the opioid receptor binding and animal pharmacology of meptazinol. Postgrad Med J. 1985;61 (Suppl 2):5–12. [PubMed] [Google Scholar]
  17. Pearl J., Aceto M. D., Fitzgerald J. J. Differences in antiwrithing activity of morphine and nalorphine over time and in slopes of the dose-response lines. Psychopharmacologia. 1968;13(4):341–345. doi: 10.1007/BF00414345. [DOI] [PubMed] [Google Scholar]
  18. Sheehan M. J., Hayes A. G., Tyers M. B. Pharmacology of delta-opioid receptors in the hamster vas deferens. Eur J Pharmacol. 1986 Oct 14;130(1-2):57–64. doi: 10.1016/0014-2999(86)90183-4. [DOI] [PubMed] [Google Scholar]
  19. Skingle M., Hayes A. G., Tyers M. B. Effects of opiates on urine output in the water-loaded rat and reversal by beta-funaltrexamine. Neuropeptides. 1985 Feb;5(4-6):433–436. doi: 10.1016/0143-4179(85)90047-2. [DOI] [PubMed] [Google Scholar]
  20. Smith C. F., Rance M. J. Opiate receptors in the rat vas deferens. Life Sci. 1983;33 (Suppl 1):327–330. doi: 10.1016/0024-3205(83)90509-x. [DOI] [PubMed] [Google Scholar]
  21. Tam S. W. (+)-[3H]SKF 10,047, (+)-[3H]ethylketocyclazocine, mu, kappa, delta and phencyclidine binding sites in guinea pig brain membranes. Eur J Pharmacol. 1985 Feb 12;109(1):33–41. doi: 10.1016/0014-2999(85)90536-9. [DOI] [PubMed] [Google Scholar]
  22. Tyers M. B. A classification of opiate receptors that mediate antinociception in animals. Br J Pharmacol. 1980 Jul;69(3):503–512. doi: 10.1111/j.1476-5381.1980.tb07041.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Upton N., Sewell R. D., Spencer P. S. Differentiation of potent mu and kappa-opiate agonists using heat and pressure antinociceptive profiles and combined potency analysis. Eur J Pharmacol. 1982 Mar 26;78(4):421–429. doi: 10.1016/0014-2999(82)90484-8. [DOI] [PubMed] [Google Scholar]
  24. Ward S. J., Takemori A. E. Relative involvement of mu, kappa and delta receptor mechanisms in opiate-mediated antinociception in mice. J Pharmacol Exp Ther. 1983 Mar;224(3):525–530. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES